Home
Class 12
PHYSICS
The maximum values of sinx(1+cosx) will ...

The maximum values of `sinx(1+cosx)` will be at the

A

`x=(pi)/(2)`

B

`x=(pi)/(6)`

C

`x=(pi)/(3)`

D

`x=pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum values of the function \( y = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Differentiate the Function We start by differentiating the function \( y \) with respect to \( x \). \[ y = \sin x (1 + \cos x) \] Using the product rule, we have: \[ y' = \frac{d}{dx}(\sin x) \cdot (1 + \cos x) + \sin x \cdot \frac{d}{dx}(1 + \cos x) \] Calculating the derivatives: \[ y' = \cos x (1 + \cos x) + \sin x (-\sin x) \] This simplifies to: \[ y' = \cos x (1 + \cos x) - \sin^2 x \] ### Step 2: Set the Derivative to Zero To find the critical points, we set \( y' = 0 \): \[ \cos x (1 + \cos x) - \sin^2 x = 0 \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can rewrite the equation: \[ \cos x (1 + \cos x) - (1 - \cos^2 x) = 0 \] This simplifies to: \[ \cos x + \cos^2 x - 1 + \cos^2 x = 0 \] \[ 2\cos^2 x + \cos x - 1 = 0 \] ### Step 3: Solve the Quadratic Equation Now, we solve the quadratic equation \( 2\cos^2 x + \cos x - 1 = 0 \) using the quadratic formula: \[ \cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm 3}{4} \] This gives us two solutions: 1. \( \cos x = \frac{1}{2} \) 2. \( \cos x = -1 \) ### Step 4: Find the Corresponding Values of \( x \) Now we find the values of \( x \): 1. For \( \cos x = \frac{1}{2} \): - \( x = \frac{\pi}{3} + 2k\pi \) or \( x = -\frac{\pi}{3} + 2k\pi \) (where \( k \) is any integer) 2. For \( \cos x = -1 \): - \( x = \pi + 2k\pi \) ### Step 5: Determine Maximum or Minimum Next, we need to determine whether these critical points are maxima or minima by using the second derivative test. ### Step 6: Find the Second Derivative We differentiate \( y' \) to find \( y'' \): \[ y' = \cos x (1 + \cos x) - \sin^2 x \] Differentiating again: \[ y'' = -\sin x (1 + \cos x) - \sin x \cdot \cos x \] \[ = -\sin x (1 + 2\cos x) \] ### Step 7: Evaluate the Second Derivative at Critical Points 1. For \( x = \frac{\pi}{3} \): \[ y''\left(\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)(1 + 2\cos\left(\frac{\pi}{3}\right)) = -\frac{\sqrt{3}}{2}(1 + 2 \cdot \frac{1}{2}) = -\frac{\sqrt{3}}{2} \cdot 2 < 0 \] This indicates a local maximum. 2. For \( x = \pi \): \[ y''(\pi) = -\sin(\pi)(1 + 2\cos(\pi)) = 0 \] This is inconclusive. ### Conclusion The maximum value of \( y = \sin x (1 + \cos x) \) occurs at \( x = \frac{\pi}{3} \).

To find the maximum values of the function \( y = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Differentiate the Function We start by differentiating the function \( y \) with respect to \( x \). \[ y = \sin x (1 + \cos x) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of sinx.cosx

The minimum value of 2^sinx+2^cosx

Show that The maximum value of sinx. cosx in R is 1/2

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

Maximum value of cosx (sinx +cos x) is equal to :

The maximum value of (1+cosx)sinx in interval 0lexle pi/2 is for (A) x =pi/2 (B) x= pi/6 (C) x=0 (D) x= pi/3

Find the maximum value of sqrt(3)sinx+cosx and x for which a maximum value occurs.

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

What is the maximum value of the function sinx + cosx ?