Home
Class 12
PHYSICS
int(sqrt(1+cosx))dx equals...

`int(sqrt(1+cosx))dx` equals

A

`2sqrt2sin(x)/(2)+c`

B

`-2sqrt2sin(x)/(2)+c`

C

`-2sqrt2cos(x)/(2)+c`

D

`2sqrtcos(x)/(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand using the half-angle identity We know from trigonometry that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int \sqrt{1 + \cos x} \, dx = \int \sqrt{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Simplify the square root The square root can be simplified: \[ \sqrt{2 \cos^2\left(\frac{x}{2}\right)} = \sqrt{2} \cdot \cos\left(\frac{x}{2}\right) \] Now the integral becomes: \[ I = \int \sqrt{2} \cdot \cos\left(\frac{x}{2}\right) \, dx \] ### Step 3: Factor out the constant We can factor out the constant \( \sqrt{2} \): \[ I = \sqrt{2} \int \cos\left(\frac{x}{2}\right) \, dx \] ### Step 4: Integrate using the standard integral formula The integral of \( \cos(ax) \) is given by: \[ \int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C \] In our case, \( a = \frac{1}{2} \), so we have: \[ \int \cos\left(\frac{x}{2}\right) \, dx = \frac{\sin\left(\frac{x}{2}\right)}{\frac{1}{2}} = 2 \sin\left(\frac{x}{2}\right) \] ### Step 5: Substitute back into the integral Substituting this back into our expression for \( I \): \[ I = \sqrt{2} \cdot 2 \sin\left(\frac{x}{2}\right) + C \] This simplifies to: \[ I = 2\sqrt{2} \sin\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the integral \( \int \sqrt{1 + \cos x} \, dx \) equals: \[ 2\sqrt{2} \sin\left(\frac{x}{2}\right) + C \] ---

To solve the integral \( \int \sqrt{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand using the half-angle identity We know from trigonometry that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(1+cosecx) dx equals

The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

intcosx/sqrt(1+cosx)dx

int sqrt(1+secx) dx is equal to:

inte^(sqrt(x))dx is equal to

intsinx/sqrt (1+cosx)dx

int(2^(x)-4cosx+2)dx equals

int(dx)/(1+cosx)

Evaluate: (i) int1/(sqrt(1-cos2x))\ dx (ii) int1/(sqrt(1+cosx))\ dx

Evaluate: (i) int1/(sqrt(1+cos2x))\ dx (ii) int1/(sqrt(1-cosx))\ dx