Home
Class 12
PHYSICS
If y=sin(2x+3) then intydx will be:...

If `y=sin(2x+3)` then `intydx` will be:

A

`(cos(2x+3))/(2)`

B

`-(cos(2x+3))/(2)+C`

C

`-cos(2x+3)`

D

`-2cos(2x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \sin(2x + 3) \) and we need to find \( \int y \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral we need to solve: \[ \int y \, dx = \int \sin(2x + 3) \, dx \] ### Step 2: Use substitution To simplify the integral, we can use a substitution. Let: \[ t = 2x + 3 \] Now, differentiate both sides with respect to \( x \): \[ dt = 2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{2} \] ### Step 3: Substitute in the integral Now we can substitute \( t \) and \( dx \) into the integral: \[ \int \sin(2x + 3) \, dx = \int \sin(t) \cdot \frac{dt}{2} \] ### Step 4: Factor out the constant We can factor out the constant \( \frac{1}{2} \): \[ \int \sin(t) \cdot \frac{dt}{2} = \frac{1}{2} \int \sin(t) \, dt \] ### Step 5: Integrate Now, we can integrate \( \sin(t) \): \[ \int \sin(t) \, dt = -\cos(t) \] Thus, we have: \[ \frac{1}{2} \int \sin(t) \, dt = \frac{1}{2} (-\cos(t)) = -\frac{1}{2} \cos(t) \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = 2x + 3 \): \[ -\frac{1}{2} \cos(t) = -\frac{1}{2} \cos(2x + 3) \] ### Step 7: Add the constant of integration Finally, we add the constant of integration \( C \): \[ \int y \, dx = -\frac{1}{2} \cos(2x + 3) + C \] ### Final Answer Thus, the final answer is: \[ \int y \, dx = -\frac{1}{2} \cos(2x + 3) + C \] ---

To solve the problem where \( y = \sin(2x + 3) \) and we need to find \( \int y \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral we need to solve: \[ \int y \, dx = \int \sin(2x + 3) \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^(sin2x)

if y=3x^3+2x+4 , then intydx will be

If y=sin^2(x^3) , then dy/dx=

If y=sin^2(x^3) , then dy/dx=

If y=x^(2)sin(x^(3)) , then int ydx will be :

If y= 2x^6 + sin 3x then dy/dx

STATEMENT-1: sin 2 > sin 3 STATEMENT-2: If x,y in (pi/2, pi), x lt y, then sin x gt siny

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2