Home
Class 12
PHYSICS
value of int0^((pi)/(2))cos3tdt is...

value of `int_0^((pi)/(2))cos3tdt ` is

A

`(2)/(3)`

B

`-(1)/(3)`

C

`-(2)/(3)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{\frac{\pi}{2}} \cos(3t) \, dt \), we can follow these steps: ### Step 1: Use a substitution Let \( x = 3t \). Then, differentiate both sides to find \( dt \): \[ dx = 3 \, dt \quad \Rightarrow \quad dt = \frac{dx}{3} \] ### Step 2: Change the limits of integration When \( t = 0 \): \[ x = 3 \cdot 0 = 0 \] When \( t = \frac{\pi}{2} \): \[ x = 3 \cdot \frac{\pi}{2} = \frac{3\pi}{2} \] ### Step 3: Rewrite the integral Now, substitute \( dt \) and change the limits: \[ \int_0^{\frac{\pi}{2}} \cos(3t) \, dt = \int_0^{\frac{3\pi}{2}} \cos(x) \cdot \frac{dx}{3} \] This simplifies to: \[ \frac{1}{3} \int_0^{\frac{3\pi}{2}} \cos(x) \, dx \] ### Step 4: Evaluate the integral The integral of \( \cos(x) \) is \( \sin(x) \): \[ \frac{1}{3} \left[ \sin(x) \right]_0^{\frac{3\pi}{2}} = \frac{1}{3} \left( \sin\left(\frac{3\pi}{2}\right) - \sin(0) \right) \] ### Step 5: Calculate the sine values We know: \[ \sin\left(\frac{3\pi}{2}\right) = -1 \quad \text{and} \quad \sin(0) = 0 \] Thus, we have: \[ \frac{1}{3} \left( -1 - 0 \right) = \frac{-1}{3} \] ### Step 6: Final answer The value of the integral \( \int_0^{\frac{\pi}{2}} \cos(3t) \, dt \) is: \[ \frac{-1}{3} \]

To solve the integral \( \int_0^{\frac{\pi}{2}} \cos(3t) \, dt \), we can follow these steps: ### Step 1: Use a substitution Let \( x = 3t \). Then, differentiate both sides to find \( dt \): \[ dx = 3 \, dt \quad \Rightarrow \quad dt = \frac{dx}{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))(cos 2x cos 2^(2)x cos 2^(3)x cos 2^(4)x)dx is equal to

The value of int_0^(pi/2)cos^2xdx

Value of int_(0)^(pi//2) cos 3t is

Evaluate : int_0^(pi/2)cos^3xdx

The value of int_(0)^(pi)abscosx^3dx is

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(pi) cos^(11)xdx , is

int_0^(pi/2) cos^5xdx

The value of int_(0)^(2pi)cos^(5)x dx , is