Home
Class 12
PHYSICS
A=2hati+hatj-hatkand C=6hati-2hatk vale...

`A=2hati+hatj-hatkand C=6hati-2hatk`
vale os A-2B+3C would be

A

20hati+5hatj+4hatk`

B

`20hati-5hatj-4hatk`

C

`4hati+5hatj+20hatk`

D

`5hati+4hatj+10hatk`

Text Solution

Verified by Experts

The correct Answer is:
B

`vecA-2vecB+3vecC=(2hati+hatj)-2(3hatj-hatk)+3(6hati-2hatk)`
`2hati+hatj-2hatk+18hati-6hatk=20hati-5hatj-4hatk`
Promotional Banner

Similar Questions

Explore conceptually related problems

vecA=2hati+hatj , B=3hatj-hatk and vecC=6hati-2hatk . value of vecA-2vecB+3vecC would be

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Constant forces P_(1)=hati-hatj+hatk, P_(2)= -hati+2hatj-hatik and P_(3)=hatj-hatk act on a particle at a point A . Determine the work done when particle is displaced from position A(4hati-3hatj-2hatk) " to" B (6hati+hatj-3hatk)

Constant forces P_(1)=hati-hatj+hatk, P_(2)= -hati+2hatj-hatik and P_(3)=hatj-hatk act on a particle at a point A . Determine the work done when particle is displaced from position A(4hati-3hatj-2hatk) " to" B (6hati+hatj-3hatk)

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If the vectors 6hati-2hatj+3hatkk,2hati+3hatj-6hatk and 3hati+6hatj-2hatk form a triangle, then it is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to