Home
Class 12
PHYSICS
If vecA=3hati+hatj+2hatk and vecB=2hati-...

If `vecA=3hati+hatj+2hatk` and `vecB=2hati-2hatj+4hatk`, then value of `|vecA X vecB|` will be

A

`8sqrt2`

B

`8sqrt3`

C

`8sqrt5`

D

`5sqrt8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the magnitude of the cross product \(|\vec{A} \times \vec{B}|\) where \(\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}\) and \(\vec{B} = 2\hat{i} - 2\hat{j} + 4\hat{k}\), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \vec{A} = 3\hat{i} + 1\hat{j} + 2\hat{k} \] \[ \vec{B} = 2\hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 2: Set up the determinant for the cross product The cross product \(\vec{A} \times \vec{B}\) can be calculated using the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{A}\) and \(\vec{B}\): \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ 2 & -2 & 4 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant, we get: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 1 & 2 \\ -2 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 2 & -2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ -2 & 4 \end{vmatrix} = (1)(4) - (2)(-2) = 4 + 4 = 8\) 2. \(\begin{vmatrix} 3 & 2 \\ 2 & 4 \end{vmatrix} = (3)(4) - (2)(2) = 12 - 4 = 8\) 3. \(\begin{vmatrix} 3 & 1 \\ 2 & -2 \end{vmatrix} = (3)(-2) - (1)(2) = -6 - 2 = -8\) Substituting these back into the equation gives: \[ \vec{A} \times \vec{B} = 8\hat{i} - 8\hat{j} - 8\hat{k} \] ### Step 4: Simplify the result Thus, we have: \[ \vec{A} \times \vec{B} = 8\hat{i} - 8\hat{j} - 8\hat{k} \] ### Step 5: Find the magnitude of the cross product The magnitude of \(\vec{A} \times \vec{B}\) is given by: \[ |\vec{A} \times \vec{B}| = \sqrt{(8)^2 + (-8)^2 + (-8)^2} \] Calculating this: \[ |\vec{A} \times \vec{B}| = \sqrt{64 + 64 + 64} = \sqrt{192} = \sqrt{64 \times 3} = 8\sqrt{3} \] ### Final Answer Thus, the value of \(|\vec{A} \times \vec{B}|\) is: \[ \boxed{8\sqrt{3}} \]

To solve the problem of finding the magnitude of the cross product \(|\vec{A} \times \vec{B}|\) where \(\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}\) and \(\vec{B} = 2\hat{i} - 2\hat{j} + 4\hat{k}\), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \vec{A} = 3\hat{i} + 1\hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk) , find the scalar product vecA and vecB

If vecA= 4hati+nhatj-2hatk and vecB=2hati+3hatj+hatk , then findt the value of n so that vecA bot vecB .

If vecA= 4hati+nhatj-2hatk and vecB=2hati+3hatj+hatk , then findt the value of n so that vecA bot vecB .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .