Home
Class 12
PHYSICS
Given that veca and vecb are two non zer...

Given that `veca and vecb` are two non zero vectors, then the value of `(veca + vecb) xx (veca-vecb)` is,

A

0

B

`A^2-B^2`

C

`vecBxxvecA`

D

`2(vecBxxvecA)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(vecA+vecB)xx(vecA-vecB)=vecAxxvecA-vecAxxvecB+vecBxxvecA-vecBxxvecB`
`=0-vecAxxvecB+vecBxxvecA-0=vecBxxvecA+vecBxxvecA=2(vecBxxvecA)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

veca,vecb and vecc are three non-zero vectors, no two of which are collinear and the vectors veca+vecb is collinear with vecc , vecb+vecc is collinear with veca , then veca+vecb+vecc=

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then

If veca, vecb and vecc are three non-zero vectors, no two of which are collinear, veca +2 vecb is collinear with vecc and vecb + 3 vecc is collinear with veca , then find the value of |veca + 2vecb + 6vecc| .