Home
Class 12
PHYSICS
The linear velocity of a rotating body i...

The linear velocity of a rotating body is given by `vec(v)= vec(omega)xxvec(r )`, where `vec(omega)` is the angular velocity and `vec(r )` is the radius vector. The angular velocity of a body is `vec(omega)= hat(i)-2hat(j)+2hat(k)` and the radius vector `vec(r )= 4hat(j)-3hat(k)`, then `|vec(v)|` is

A

`sqrt(29)` units

B

`sqrt(31)` units

C

`sqrt(37)` units

D

`sqrt(41)` units

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the linear velocity vector \(\vec{v}\) using the cross product of the angular velocity vector \(\vec{\omega}\) and the radius vector \(\vec{r}\). The given vectors are: \[ \vec{\omega} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ \vec{r} = 4\hat{j} - 3\hat{k} \] ### Step 1: Set up the cross product The cross product \(\vec{v} = \vec{\omega} \times \vec{r}\) can be calculated using the determinant of a 3x3 matrix: \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 0 & 4 & -3 \end{vmatrix} \] ### Step 2: Calculate the determinant To compute the determinant, we expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -2 & 2 \\ 4 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 0 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 0 & 4 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -2 & 2 \\ 4 & -3 \end{vmatrix} = (-2)(-3) - (2)(4) = 6 - 8 = -2 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 1 & 2 \\ 0 & -3 \end{vmatrix} = (1)(-3) - (2)(0) = -3 - 0 = -3 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 1 & -2 \\ 0 & 4 \end{vmatrix} = (1)(4) - (-2)(0) = 4 - 0 = 4 \] Putting it all together, we have: \[ \vec{v} = -2\hat{i} - (-3)\hat{j} + 4\hat{k} = -2\hat{i} + 3\hat{j} + 4\hat{k} \] ### Step 3: Find the magnitude of \(\vec{v}\) The magnitude of the vector \(\vec{v}\) is given by: \[ |\vec{v}| = \sqrt{(-2)^2 + 3^2 + 4^2} \] Calculating each term: \[ (-2)^2 = 4, \quad 3^2 = 9, \quad 4^2 = 16 \] Now summing these: \[ |\vec{v}| = \sqrt{4 + 9 + 16} = \sqrt{29} \] ### Final Answer Thus, the magnitude of the linear velocity \(|\vec{v}|\) is: \[ |\vec{v}| = \sqrt{29} \text{ units} \]

To solve the problem, we need to find the linear velocity vector \(\vec{v}\) using the cross product of the angular velocity vector \(\vec{\omega}\) and the radius vector \(\vec{r}\). The given vectors are: \[ \vec{\omega} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ \vec{r} = 4\hat{j} - 3\hat{k} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

What is the value of linear velocity, if vec(omega)=3hat(i)-4hat(j)+hat(k) and vec(R)=5hat(i)-6hat(j)+6hat(k) .

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is