Home
Class 12
PHYSICS
If |vecAxxvecB|=sqrt3 vecA.vecB then the...

If `|vecAxxvecB|=sqrt3 vecA.vecB` then the value of `|vecA+vecB|` is :-

A

(A^2+B^2+(AB)/(sqrt3))^((1)/(2))`

B

`A+B`

C

`(A^2B^2+sqrt3AB)^((1)/(2))`

D

`(A^2+B^2+AB)^((1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

`|vecAxxvecB|=sqrt(3)(vecA.vecB)`
AB `sintheta=sqrt(3)Abcosthetaimpliestantheta=sqrt(3)becausetheta=60^@`
Now `|vecR|=|vecA+vecB|=sqrt(A^(2)+B^(2)+2ABcostheta)`
`=sqrt(A^(2)+B^(2)+2AB((1)/(2)))=(A^(2)+B^(2)AB)^((1)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If |veca|=10,|vecb|=2andveca.vecb=12 , then the value of |vecaxxvecb| is

If sqrt3|vecAxx vecB|= vecA*vecB , then find the angle between vecA and vecB .

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

If |vecaxxvecb|=1/sqrt3|veca.vecb| , find the angle between vec a and vecb

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb