Home
Class 11
PHYSICS
y(t)=2sin3pit y(2)=2sin(3pit-(pi)/(8))...

`y_(t)=2sin3pit`
`y_(2)=2sin(3pit-(pi)/(8))`
The wave velocity is , if the path difference is 1cm .

A

4cm

B

2cm

C

1cm

D

zero

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

two particle of medium disturbed by the wave propagation are at x_(1)=0cm and x_(2)=1 cm . The respective displacement (in cm) of the particles can be given by the equation: y_(1)=2 sin 3pi t, y_(2) sin (3pi t-pi//8) the wave velocity is

two particle of medium disturbed by the wave propagation are at x_(1)=0 and x_(2)=1 cm . The respective displacement (in cm) of the particles can be given by the equation: y_(1)=2 sin 3pi t, y_(2) sin (3pi t-pi//8) the wave velocity is

Two simple harmonic motions are given by y_(1) = a sin [((pi)/(2))t + phi] and y_(2) = b sin [((2pi)/( 3))t + phi] . The phase difference between these after 1 s is

If two S.H.M.'s are represented by equation y_(1) = 10 "sin" [3pit+(pi)/(4)] and y_(2) = 5[sin(3pit)+sqrt(3)cos(3pit)] then find the ratio of their amplitudes and phase difference in between them.

Two simple harmonic are represented by the equation y_(1)=0.1 sin (100pi+(pi)/3) and y_(2)=0.1 cos pit . The phase difference of the velocity of particle 1 with respect to the velocity of particle 2 is.

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

A particle is subjected to two simple harmonic motions given by x_1=2.0sin(100pit)and x_2=2.0sin(120pit+pi/3) , where x is in centimeter and t in second. Find the displacement of the particle at a. t=0.0125, b. t= 0.025.

For different independent waves are represented by a) Y_(1)=a_(1)sin omega_(1)t , b) Y_(2)=a_(2) sin omega_(2)t c) Y_(3)=a_(3) sin omega_(3)t , d) Y_(4)=a_(4) sin(omega_(4)t+(pi)/(3)) The sustained interference is possible due to

Two S.H.Ms are given by y_(1) = a sin ((pi)/(2) t + (pi)/(2)) and y_(2) = b sin ((2pi)/(3) t + (pi)/(2)) . The phase difference between these after 1 second is