Home
Class 11
PHYSICS
Funcation x=A sin^(2) omegat+B cos^(2) o...

Funcation `x=A sin^(2) omegat+B cos^(2) omegat+ C sin omegat cos omegat` Represents SHM.

A

For any value of A, B and C (except C = 0).

B

If A=B,C=2B and amplitude= `|Bsqrt2|`

C

If A=B,C=0

D

If A=B,C=2B amplitude=|B|.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( x = A \sin^2(\omega t) + B \cos^2(\omega t) + C \sin(\omega t) \cos(\omega t) \) represents simple harmonic motion (SHM), we will analyze the expression step by step. ### Step 1: Rewrite the trigonometric identities We can use the trigonometric identities to rewrite the terms in the function: 1. \( \sin^2(\omega t) = \frac{1 - \cos(2\omega t)}{2} \) 2. \( \cos^2(\omega t) = \frac{1 + \cos(2\omega t)}{2} \) 3. \( \sin(\omega t) \cos(\omega t) = \frac{1}{2} \sin(2\omega t) \) ### Step 2: Substitute the identities into the function Substituting these identities into the function, we get: \[ x = A \left(\frac{1 - \cos(2\omega t)}{2}\right) + B \left(\frac{1 + \cos(2\omega t)}{2}\right) + C \left(\frac{1}{2} \sin(2\omega t)\right) \] ### Step 3: Simplify the expression Now, we can simplify the expression: \[ x = \frac{A}{2} - \frac{A}{2} \cos(2\omega t) + \frac{B}{2} + \frac{B}{2} \cos(2\omega t) + \frac{C}{2} \sin(2\omega t) \] Combining the terms gives: \[ x = \left(\frac{A + B}{2}\right) + \left(\frac{B - A}{2}\right) \cos(2\omega t) + \left(\frac{C}{2}\right) \sin(2\omega t) \] ### Step 4: Identify the form of SHM The expression now has the form: \[ x = D + E \cos(2\omega t) + F \sin(2\omega t) \] where: - \( D = \frac{A + B}{2} \) - \( E = \frac{B - A}{2} \) - \( F = \frac{C}{2} \) This represents SHM if \( E \) and \( F \) are not both zero. ### Step 5: Analyze the conditions for SHM 1. If \( C = 0 \) and \( A \neq B \), then \( x \) represents SHM. 2. If \( A = -B \) and \( C = 2B \), we find that the terms will still allow for SHM. 3. If \( A = B = C = 0 \), then there is no motion, hence not SHM. ### Conclusion The function represents SHM under the conditions: - For any values of \( A \) and \( B \) except when \( C = 0 \). - If \( A = -B \) and \( C = 2B \), the amplitude will be \( b\sqrt{2} \). - If \( A = B = C = 0 \), it does not represent SHM.
Promotional Banner

Topper's Solved these Questions

  • LINEAR AND ANGULAR SIMPLE HARMONIC MOTION

    CENGAGE PHYSICS ENGLISH|Exercise Subjective type|3 Videos
  • LINEAR AND ANGULAR SIMPLE HARMONIC MOTION

    CENGAGE PHYSICS ENGLISH|Exercise Single correct anwer type|14 Videos
  • LINEAR AND ANGULAR SIMPLE HARMONIC MOTION

    CENGAGE PHYSICS ENGLISH|Exercise Multiple Correct Answer Type|5 Videos
  • KINETIC THEORY OF GASES AND FIRST LAW OF THERMODYNAMICS

    CENGAGE PHYSICS ENGLISH|Exercise Interger|11 Videos
  • MISCELLANEOUS KINEMATICS

    CENGAGE PHYSICS ENGLISH|Exercise Interger type|3 Videos

Similar Questions

Explore conceptually related problems

Function x=Asin^(2)omegat+Bcos^(2)omegat+Csinomegat cos omegat represents simple harmonic motion,

Equations y_(1) =A sinomegat and y_(2) = A/2 sin omegat + A/2 cos omega t represent S.H.M. The ratio of the amplitudes of the two motions is

Which of the following functions of time represent (a) simple harmonic (b) periodic but not simple harmonic and (c ) non periodic motion? Give period for each case of periodic motion (omega is nay positive constant) (1) Sin^(3) omegat (2) 3cos (pi//4 -2 omegat) (3) cos omegat +cos 3 omegat + cos 5 omegat (4) e^(-omega^(2)t^(2)) (5) 1 + omegat +omega^(2) t^(2)

The function sin^(2) (omegat) represents.

Which of the following functions represent SHM :- (i) sin 2omegat , (ii) sin omegat + 2cos omegat , (iii) sinomegat + cos 2omegat

Find the average value in the following cases (i) i=4+3 cos omegat (ii) I=5sinomegat + 2sin2omegat + 3sin3omegat (iv) V= cosomegat + 3cos2omegat + 3cos3omegat + 2

A simple harmonic motion is represented by x(t) = sin^2 omegat - 2 cos^(2) omegat . The angular frequency of oscillation is given by

Two simple harmonic motions are given by y _(1) = 5 sin ( omegat- pi //3). y_(2) = 5 ( sin omegat+ sqrt(3) cos omegat) . Ratio of their amplitudes is

If a waveform has the equation y_1=A_1 sin (omegat-kx) & y_2=A_2 cos (omegat-kx) , find the equation of the resulting wave on superposition.

Out of the following functions representing motion of a particle which represents SHM? 1. x=sin^(3)omegat 2. x=1+omegat+omega^(2)t^(2) 3. x=cosomegat+cos3omegat+cos5omegat 4. x=sinomegat+cosomegat