Home
Class 12
PHYSICS
If I1/I2 =4 then find the value of (Imax...

If `I_1/I_2` =4 then find the value of `(I_max - I_min)/ (I_max+I_min)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript. ### Step 1: Write down the given data We are given the ratio of intensities \( \frac{I_1}{I_2} = 4 \). This implies: - \( I_1 = 4k \) - \( I_2 = k \) for some constant \( k \). ### Step 2: Calculate \( I_{max} \) The formula for maximum intensity \( I_{max} \) in terms of \( I_1 \) and \( I_2 \) is: \[ I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2 \] Substituting the values of \( I_1 \) and \( I_2 \): \[ I_{max} = (\sqrt{4k} + \sqrt{k})^2 = (2\sqrt{k} + \sqrt{k})^2 = (3\sqrt{k})^2 = 9k \] ### Step 3: Calculate \( I_{min} \) The formula for minimum intensity \( I_{min} \) is: \[ I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2 \] Substituting the values: \[ I_{min} = (\sqrt{4k} - \sqrt{k})^2 = (2\sqrt{k} - \sqrt{k})^2 = (\sqrt{k})^2 = k \] ### Step 4: Calculate \( I_{max} - I_{min} \) and \( I_{max} + I_{min} \) Now we can find \( I_{max} - I_{min} \) and \( I_{max} + I_{min} \): \[ I_{max} - I_{min} = 9k - k = 8k \] \[ I_{max} + I_{min} = 9k + k = 10k \] ### Step 5: Find the value of \( \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \) Now we can substitute these values into the expression: \[ \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{8k}{10k} = \frac{8}{10} = \frac{4}{5} \] ### Final Answer Thus, the value of \( \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \) is \( \frac{4}{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    CENGAGE PHYSICS ENGLISH|Exercise Matching Column Type|2 Videos
  • SOURCES OF MAGNETIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise single correct Ansewer type|12 Videos

Similar Questions

Explore conceptually related problems

If I_1/I_2 =16 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =25 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =9 then find the value of (I_max - I_min)/ (I_max+I_min) A ̅

Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is

The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

If the ratio of the intensity of two coherent sources is 4 then the visibility [(I_(max)-I_(min))//(I_(max)+I_(min))] of the fringes is

The interference pattern is obtained with two coherent light sources of intensity ration n. In the interference pattern, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.

Interference pattern is obtained with two coherent light sources of intensity ratio .b.. In the interference pattern, the ratio of (I_("max")-I_("min"))/(I_("max")+I_("min")) will be