Home
Class 12
PHYSICS
If I1/I2 =9 then find the value of (Imax...

If `I_1/I_2` =9 then find the value of `(I_max - I_min)/ (I_max+I_min)` `A ̅`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) given that \(\frac{I_1}{I_2} = 9\), we can follow these steps: ### Step 1: Understand the given ratio We are given that \(\frac{I_1}{I_2} = 9\). This implies that: \[ I_1 = 9k \quad \text{and} \quad I_2 = k \] for some constant \(k\). ### Step 2: Calculate \(I_{\text{max}}\) and \(I_{\text{min}}\) Using the formulas for maximum and minimum intensity in interference patterns: \[ I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2 \] \[ I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2 \] ### Step 3: Substitute the values of \(I_1\) and \(I_2\) Substituting \(I_1 = 9k\) and \(I_2 = k\): \[ I_{\text{max}} = (\sqrt{9k} + \sqrt{k})^2 = (3\sqrt{k} + \sqrt{k})^2 = (4\sqrt{k})^2 = 16k \] \[ I_{\text{min}} = (\sqrt{9k} - \sqrt{k})^2 = (3\sqrt{k} - \sqrt{k})^2 = (2\sqrt{k})^2 = 4k \] ### Step 4: Calculate \(I_{\text{max}} - I_{\text{min}}\) and \(I_{\text{max}} + I_{\text{min}}\) Now we can find: \[ I_{\text{max}} - I_{\text{min}} = 16k - 4k = 12k \] \[ I_{\text{max}} + I_{\text{min}} = 16k + 4k = 20k \] ### Step 5: Find the required ratio Now we can find the ratio: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{12k}{20k} = \frac{12}{20} = \frac{3}{5} \] ### Final Answer Thus, the value of \(\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}\) is \(\frac{3}{5}\). ---
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    CENGAGE PHYSICS ENGLISH|Exercise Matching Column Type|2 Videos
  • SOURCES OF MAGNETIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise single correct Ansewer type|12 Videos

Similar Questions

Explore conceptually related problems

If I_1/I_2 =16 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =25 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =4 then find the value of (I_max - I_min)/ (I_max+I_min)

Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is

Find the value of (1+ i)^(6) + (1-i)^(6)

Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.

The interference pattern is obtained with two coherent light sources of intensity ration n. In the interference pattern, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Find the value of |(1+i)((2+i))/((3+i))|