Home
Class 11
CHEMISTRY
In reaction: CH(3)COCH(3)(g)hArrCH(3)C...

In reaction:
`CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g),`
if the initial pressure of `CH_(3)COCH_(3)(g)` is `150 mm` and at equilibrium the mole fraction of `CO(g)` is `1/3`, then the value `K_(P)` is

A

`50 mm`

B

`100 mm`

C

`33.3 mm`

D

`75 mm`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the balanced chemical equation. The reaction is given as: \[ \text{CH}_3\text{COCH}_3(g) \rightleftharpoons \text{CH}_3\text{CH}_3(g) + \text{CO}(g) \] ### Step 2: Define initial conditions. The initial pressure of \(\text{CH}_3\text{COCH}_3\) is given as \(150 \, \text{mm}\). The initial pressures of the products \(\text{CH}_3\text{CH}_3\) and \(\text{CO}\) are both \(0 \, \text{mm}\). ### Step 3: Define changes at equilibrium. Let \(x\) be the change in pressure of \(\text{CH}_3\text{COCH}_3\) that dissociates at equilibrium. Thus, at equilibrium: - Pressure of \(\text{CH}_3\text{COCH}_3 = 150 - x\) - Pressure of \(\text{CH}_3\text{CH}_3 = x\) - Pressure of \(\text{CO} = x\) ### Step 4: Calculate total pressure at equilibrium. The total pressure at equilibrium is: \[ P_{\text{total}} = P_{\text{CH}_3\text{COCH}_3} + P_{\text{CH}_3\text{CH}_3} + P_{\text{CO}} = (150 - x) + x + x = 150 + x \] ### Step 5: Use the mole fraction of CO to find x. The mole fraction of \(\text{CO}\) is given as \(\frac{1}{3}\). The mole fraction is defined as: \[ \text{Mole fraction of CO} = \frac{P_{\text{CO}}}{P_{\text{total}}} = \frac{x}{150 + x} \] Setting this equal to \(\frac{1}{3}\): \[ \frac{x}{150 + x} = \frac{1}{3} \] ### Step 6: Solve for x. Cross-multiplying gives: \[ 3x = 150 + x \] Rearranging gives: \[ 3x - x = 150 \implies 2x = 150 \implies x = 75 \] ### Step 7: Calculate pressures at equilibrium. Now we can find the pressures at equilibrium: - \(P_{\text{CH}_3\text{COCH}_3} = 150 - x = 150 - 75 = 75 \, \text{mm}\) - \(P_{\text{CH}_3\text{CH}_3} = x = 75 \, \text{mm}\) - \(P_{\text{CO}} = x = 75 \, \text{mm}\) ### Step 8: Calculate \(K_P\). The equilibrium constant \(K_P\) is given by: \[ K_P = \frac{P_{\text{CH}_3\text{CH}_3} \cdot P_{\text{CO}}}{P_{\text{CH}_3\text{COCH}_3}} = \frac{75 \cdot 75}{75} \] Calculating this gives: \[ K_P = \frac{5625}{75} = 75 \, \text{mm} \] ### Final Answer: The value of \(K_P\) is \(75 \, \text{mm}\). ---

To solve the problem, we will follow these steps: ### Step 1: Write the balanced chemical equation. The reaction is given as: \[ \text{CH}_3\text{COCH}_3(g) \rightleftharpoons \text{CH}_3\text{CH}_3(g) + \text{CO}(g) \] ### Step 2: Define initial conditions. The initial pressure of \(\text{CH}_3\text{COCH}_3\) is given as \(150 \, \text{mm}\). The initial pressures of the products \(\text{CH}_3\text{CH}_3\) and \(\text{CO}\) are both \(0 \, \text{mm}\). ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Concept Applicationexercise 7.1|53 Videos
  • CHEMICAL EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 7.2|40 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|15 Videos
  • CLASSIFICATION AND NOMENCLATURE OF ORGANIC COMPOUNDS

    CENGAGE CHEMISTRY ENGLISH|Exercise Analytical and Descriptive Type|3 Videos

Similar Questions

Explore conceptually related problems

CH_(3)COCH_(3(g))hArrC_(2)H_(6) (g)+CO_((g)) , The initial pressure of CH_(3)COCH_(3) is 50 mm . At equilibrium the mole fraction of C_(2)H_(6) is 1/5 then K_(p) will be :-

CH_3COCH_3(g)⇌CH_3CH_3(g)+CO(g) Initial pressure of CH_3COCH_3 is 150mm of Hg. When equilibrium is set up fraction of CO(g) is 1/3 . Hence Kp is?

Name the functional group present in CH_(3)COCH_(3)

Write the IUPAC name of CH_(3)COCH_(2)COCH_(3) .

IUPAC name of CH_(3)CH_(2)CH_(2)CH(CH_(3))COCH_(3) is

Write the IUPAC name of : CH_(3)CH_(2)COCH_(3) .