Home
Class 11
CHEMISTRY
What is DeltaG^(ɵ) for the following rea...

What is `DeltaG^(ɵ)` for the following reaction? `1/2 N_(2)(g)+3/2 H_(2)(g) hArr NH_(3)(g), K_(p)=4.42xx10^(4)` at `25^(@)C`

A

`-26.5 kJ mol^(-1)`

B

`11.5 kJ mol^(-1)`

C

`-2.2 kJ mol^(-1)`

D

`-0.97 kJ mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs free energy change (ΔG°) for the reaction: \[ \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \rightleftharpoons NH_3(g) \] with the equilibrium constant \( K_p = 4.42 \times 10^4 \) at \( 25^\circ C \), we can use the following equation: \[ \Delta G° = -2.303 \cdot R \cdot T \cdot \log K_p \] ### Step-by-Step Solution: **Step 1: Convert the temperature to Kelvin.** - The temperature in Celsius is \( 25^\circ C \). - To convert to Kelvin, use the formula: \[ T(K) = T(°C) + 273.15 \] - Thus, \( T = 25 + 273.15 = 298.15 \, K \). **Step 2: Identify the value of the gas constant \( R \).** - The value of \( R \) in kilojoules per mole per Kelvin is: \[ R = 8.314 \, \text{J/(mol·K)} = 8.314 \times 10^{-3} \, \text{kJ/(mol·K)} \] **Step 3: Calculate the logarithm of the equilibrium constant \( K_p \).** - Given \( K_p = 4.42 \times 10^4 \), we need to find \( \log K_p \): \[ \log K_p = \log(4.42 \times 10^4) = \log(4.42) + \log(10^4) = \log(4.42) + 4 \] - Using a calculator, \( \log(4.42) \approx 0.645 \). - Therefore, \( \log K_p \approx 0.645 + 4 = 4.645 \). **Step 4: Substitute the values into the ΔG° equation.** - Now substitute \( R \), \( T \), and \( \log K_p \) into the equation: \[ \Delta G° = -2.303 \cdot (8.314 \times 10^{-3} \, \text{kJ/(mol·K)}) \cdot (298.15 \, K) \cdot (4.645) \] **Step 5: Perform the calculation.** - Calculate the product: \[ \Delta G° = -2.303 \cdot 8.314 \times 10^{-3} \cdot 298.15 \cdot 4.645 \] - First, calculate \( 2.303 \cdot 8.314 \times 10^{-3} \cdot 298.15 \): \[ = 5.693 \, \text{kJ/mol} \] - Now, multiply by \( 4.645 \): \[ \Delta G° = -5.693 \cdot 4.645 \approx -26.5 \, \text{kJ/mol} \] ### Final Answer: Thus, the standard Gibbs free energy change for the reaction is: \[ \Delta G° \approx -26.5 \, \text{kJ/mol} \]

To calculate the standard Gibbs free energy change (ΔG°) for the reaction: \[ \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \rightleftharpoons NH_3(g) \] with the equilibrium constant \( K_p = 4.42 \times 10^4 \) at \( 25^\circ C \), we can use the following equation: ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Concept Applicationexercise 7.1|53 Videos
  • CHEMICAL EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 7.2|40 Videos
  • CHEMICAL BONDING AND MOLECULAR STRUCTURE

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|15 Videos
  • CLASSIFICATION AND NOMENCLATURE OF ORGANIC COMPOUNDS

    CENGAGE CHEMISTRY ENGLISH|Exercise Analytical and Descriptive Type|3 Videos

Similar Questions

Explore conceptually related problems

For the reaction N_(2)(g) + 3H_(2)(g) hArr 2NH_(3)(g), DeltaH=?

For the reaction, N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) , the units of K_(p) are …………

For the reactions, N_2(g) + 3H_2(g) hArr 2NH_3(g), " " K_p=K_c (RT)^(…..)

K_p is how many times equal to K_c for the given reaction ? N_2(g) +3H_2 (g) hArr 2NH_3(g)

The equilibrium constant K_(p) , for the reaction N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) is 1.6xx10^(-4) at 400^(@)C . What will be the equilibrium constant at 500^(@)C if the heat of reaction in this temperature range is -25.14 kcal?

Write the relation between K_(p)and K_(c) for the following reactions (i) N_(2)(g)+3H_(2)(g)hArr2H_(2)(g)+O_(2)(g) (ii) 2H_(2)O(g)hArr2H_(2)(g)+O_(2)(g)

K_(p) and K_(c) are inter related as K_(p)=K_(c)(RT)^(Deltan) Answer the following questions: For N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g), K_(p)//K_(c) is equal to:

Write the relation between K_(p) " and " K_(c) for the reaction: N_(2)(g) +3H_(2) (g) hArr 2NH_(3)(g)

Given equilibrium constants for the following reaction at 1200^(@)C C(g)+CO_(2)(g)hArr 2CO(g), K_(p_(1))=1.47xx10^(3) CO(g)+1//2Cl_(2)(g)hArr COCl(g), K_(P_(2))=2xx10^(6) Calculate K_(P) for the reaction : C(g)+CO_(2)+Cl_(2)(g)hArr 2COCl(g)

Calculate the expression for K_(C) "and" K_(P) if initially a moles of N_(2) "and" B "moles of" H_(2) is taken for the following reaction. N_(2)(g)+3H_(2)(g)hArr2NH_(3)(g) (Deltanlt0) (P,T,V given)