Home
Class 11
CHEMISTRY
Arrange the following solutions in decre...

Arrange the following solutions in decreasing order of `[Ag^(o+)]` ion:
I. `1M [Ag(CN)_(2)]^(Theta)`
II. Saturated `AgC1`
III. `1M [Ag(NH_(3))_(2)]^(o+) in 0.1M NH_(3)`
IV. Saturated `AgI`
`(K_(sp) of AgC1 = 10^(-10), K_(sp) of AgI = 8.3 xx 10^(-17) K_(f)` (formation constant) `[Ag(CN_(2))]^(Theta) = 10^(21), K_(f) [Ag(NH_(3))_(2)]^(o+) = 10^(8)`

A

`I gt II gt III gt IV`

B

`II gt III gt I gt IV`

C

`IV gt II gt II gt I`

D

`I gt IV gt III gt II`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of arranging the given solutions in decreasing order of `[Ag^(+) ]` ion concentration, we will analyze each solution step by step. ### Step 1: Analyze `[Ag(CN)2]^-` solution - The complex ion `[Ag(CN)2]^-` has a formation constant \( K_f = 10^{21} \). - The dissociation can be represented as: \[ [Ag(CN)_{2}]^{-} \rightleftharpoons Ag^{+} + 2CN^{-} \] - Let \( x \) be the concentration of \( Ag^{+} \) produced. Then, the concentration of \( CN^{-} \) will be \( 2x \). - The equilibrium expression for the dissociation constant \( K_d \) is: \[ K_d = \frac{[Ag^{+}][CN^{-}]^2}{[[Ag(CN)_{2}]^{-}]} = \frac{x(2x)^2}{1-x} \approx \frac{4x^3}{1} \quad (\text{since } x \text{ is small}) \] - Given \( K_f = 10^{21} \), we find \( K_d \): \[ K_d = \frac{1}{K_f} = 10^{-21} \] - Setting the equation: \[ 10^{-21} = 4x^3 \implies x^3 = \frac{10^{-21}}{4} \implies x = \sqrt[3]{\frac{10^{-21}}{4}} \approx 6.3 \times 10^{-8} \text{ M} \] ### Step 2: Analyze Saturated `AgCl` solution - The dissociation of `AgCl` is: \[ AgCl \rightleftharpoons Ag^{+} + Cl^{-} \] - Let \( x \) be the concentration of \( Ag^{+} \): \[ K_{sp} = [Ag^{+}][Cl^{-}] = x^2 \] - Given \( K_{sp} = 10^{-10} \): \[ 10^{-10} = x^2 \implies x = 10^{-5} \text{ M} \] ### Step 3: Analyze `1M [Ag(NH3)2]^{+}` solution - The dissociation can be represented as: \[ [Ag(NH_{3})_{2}]^{+} \rightleftharpoons Ag^{+} + 2NH_{3} \] - The formation constant \( K_f = 10^{8} \) gives: \[ K_d = \frac{1}{K_f} = 10^{-8} \] - Let \( x \) be the concentration of \( Ag^{+} \): \[ K_d = \frac{x(0.1 + 2x)^2}{1-x} \approx \frac{x(0.1)^2}{1} \quad (\text{since } x \text{ is small}) \] - Setting the equation: \[ 10^{-8} = x(0.1)^2 \implies x = \frac{10^{-8}}{0.01} = 10^{-6} \text{ M} \] ### Step 4: Analyze Saturated `AgI` solution - The dissociation of `AgI` is: \[ AgI \rightleftharpoons Ag^{+} + I^{-} \] - Let \( y \) be the concentration of \( Ag^{+} \): \[ K_{sp} = [Ag^{+}][I^{-}] = y^2 \] - Given \( K_{sp} = 8.3 \times 10^{-17} \): \[ 8.3 \times 10^{-17} = y^2 \implies y = \sqrt{8.3 \times 10^{-17}} \approx 2.8 \times 10^{-9} \text{ M} \] ### Step 5: Compare the concentrations Now we have the following concentrations: 1. `[Ag(CN)2]^-`: \( 6.3 \times 10^{-8} \) M 2. `AgCl`: \( 10^{-5} \) M 3. `[Ag(NH3)2]^{+}`: \( 10^{-6} \) M 4. `AgI`: \( 2.8 \times 10^{-9} \) M ### Final Order Arranging these in decreasing order: 1. `AgCl`: \( 10^{-5} \) M 2. `[Ag(NH3)2]^{+}`: \( 10^{-6} \) M 3. `[Ag(CN)2]^{-}`: \( 6.3 \times 10^{-8} \) M 4. `AgI`: \( 2.8 \times 10^{-9} \) M The final order of decreasing concentration of `[Ag^(+) ]` is: **II > III > I > IV**

To solve the problem of arranging the given solutions in decreasing order of `[Ag^(+) ]` ion concentration, we will analyze each solution step by step. ### Step 1: Analyze `[Ag(CN)2]^-` solution - The complex ion `[Ag(CN)2]^-` has a formation constant \( K_f = 10^{21} \). - The dissociation can be represented as: \[ [Ag(CN)_{2}]^{-} \rightleftharpoons Ag^{+} + 2CN^{-} \] ...
Promotional Banner

Topper's Solved these Questions

  • IONIC EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 8.5|6 Videos
  • IONIC EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Subjective (Weak Acid And Weak Bases)|15 Videos
  • IONIC EQUILIBRIUM

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 8.3|38 Videos
  • HYDROGEN, WATER AND HYDROGEN PEROXIDE

    CENGAGE CHEMISTRY ENGLISH|Exercise Subjective Archive (Subjective)|3 Videos
  • ISOMERISM

    CENGAGE CHEMISTRY ENGLISH|Exercise Assertion-Reasoning Type|1 Videos

Similar Questions

Explore conceptually related problems

The increasing order of Ag^(+) ion concentration in I. Saturated solution of AgCl II. Saturated solution of Agl III. 1MAg(NH_(3))_(2)^(+)" in "0.1 M NH_(3) IV. 1MAg(CN)_(2)^(-)" in "0.1 M KCN Given : K_(sp)" of "AgCl=1.0xx10^(-10) K_(sp)" of "Agl=1.0xx10^(-16) K_(d)" of "Ag(NH_(3))_(2)^(+)=1.0xx10^(-8) K_(d)" of "Ag(CN)_(2)^(-)=1.0xx10^(-21)

Ag^(+) + NH_(3) ltimplies [Ag(NH_(3))]^(+), k_(1)=6.8 xx 10^(-5) [Ag(NH_(3))]^(+) + NH_(3) ltimplies [Ag(NH_(3))_(2)]^(+) , k_(2) = 1.6xx10^(-3) The formation constant of [Ag(NH_(3))_(2)]^(+) is :

How many moles of NH_(3) must be added to 1.0L of 0.75M AgNO_(3) in order to reduce the [Ag^(o+)] to 5.0 xx 10^(-8)M. K_(f) Ag (NH_(3))_(2)^(o+) = 1 xx 10^(8) .

The simultaneous solubility of AgCN(K_(sp)=2.5xx10^(-16)) and AgCl(K_(sp)=1.6xx10^(-10)) in 1.0 M NH_(3)(aq.) are respectively: [Given: K_(f1)[Ag(NH_(3))_(2)^(+)=10^(7)

What is the molar solubility of AgCl(s) in 0.1 M NH_(3)(aq)?K_(sp)(AgCl)=1.8xx10^(-10), K_(f)[Ag(NH_(3))_(2)]^(+)=1.6xx10^(7).

Calculate the solubility of CoS in 0.1M H_(2)S and 0.15M H_(3)O^(oplus) (K_(sp) of CoS = 3 xx 10^(-26)) . (K_(1) xx K_(2) (H_(2)S) = 10^(-21))

If 500 mL of 0.4 M AgNO_(3) is mixed with 500 mL of 2 M NH_(3) solution then what is the concentration of Ag(NH_(3))^(+) in solution? Given : K_(f1)[Ag(NH_(3))]^(+)=10^(3),K_(f2)[Ag(NH_(3))_(2)^(+)]=10^(4)

If K_(SP) of Ag_(2)S is 10^(-17) , the solubility of Ag_(2) S in 0.1 M solution of Na_(2)S will be :

Equal volume of 0.02 M KCl and 0.02 M K[Ag(CN)_(2)] are mixed , then the precipitate of AgCl will Ksp AgCl = 1.5 xx 10^(-10) K (K[Ag (CN)_(2)]) = 4xx 10^(-22)

Equal volumes of 0.02M AgNO_(3) and 0.01M HCN are mixed. Calculate [Ag^(o+)] in solution after attaining equilibrium. K_(a) HCN = 6.2 xx 10^(-10) and K_(sp) of AgCN = 2.2 xx 10^(-16) .

CENGAGE CHEMISTRY ENGLISH-IONIC EQUILIBRIUM-Ex 8.4
  1. The pH indicators are

    Text Solution

    |

  2. In which of the following acid-base titration, the pH is greater than ...

    Text Solution

    |

  3. Strong acids are generally used as standard solution in acid-base titr...

    Text Solution

    |

  4. The best indicator for detection of end point in titration of a weak a...

    Text Solution

    |

  5. The precipitate of CaF(2) (K(sp)=1.7xx10^(-10)) is obtained when equal...

    Text Solution

    |

  6. The solubility of A(2)B(3) is "x mol dm"^(-3). Its K(sp) is

    Text Solution

    |

  7. The pH of Ca(OH)(2) is 10.6 at 25^(@)C. K(sp) of Ca(OH)(2) is

    Text Solution

    |

  8. Solubility of AgI in 0.05M BaI(2) solution is 10^(-15)M. The solubilit...

    Text Solution

    |

  9. Solubility of a solute in water is dependent on temperature as given b...

    Text Solution

    |

  10. The solubility of CaF(2) in a solution of 0.1M Ca(NO(3))(2) is

    Text Solution

    |

  11. The volume of water needed to dissolve 1mg of PbSO(4) (K(sp) = 1.44 xx...

    Text Solution

    |

  12. The volume of water needed to prepare a satured solution of Ag^(o+) ha...

    Text Solution

    |

  13. How many grams of KBr can be added to 1L of 0.12 M solution of AgNO(3)...

    Text Solution

    |

  14. The solubility of silver benzoate (C(6)H(5)COOAg) in H(2)O and in a bu...

    Text Solution

    |

  15. The solubility of CH(3)COOAg in a buffer solution with pH = 4, whose K...

    Text Solution

    |

  16. the ratio of solubility of CH(3)COOAg in a buffer solution with pH = 4...

    Text Solution

    |

  17. What is the maximum molarity of Co^(+2) ions in 0.1M HC1 saturated wit...

    Text Solution

    |

  18. The following curve shows the change of pH during the course of titrat...

    Text Solution

    |

  19. If the salts M(2)X,QY(2), and PZ(3) have the same solubilities (lt(4)/...

    Text Solution

    |

  20. Arrange the following solutions in decreasing order of [Ag^(o+)] ion: ...

    Text Solution

    |