Home
Class 12
CHEMISTRY
In cubic ZnS (II-VI) compounds, if the r...

In cubic `ZnS (II-VI)` compounds, if the radii of `Zn` and `S` atoms are `0.74 Å` and `1.70 Å`, the lattice parameter of cubic `ZnS` is

A

`11.87 Å`

B

`5.634 Å`

C

`5.14 Å`

D

`2.97 Å`

Text Solution

AI Generated Solution

The correct Answer is:
To find the lattice parameter \( a \) of cubic \( ZnS \), we can follow these steps: ### Step 1: Understand the Structure of \( ZnS \) In cubic \( ZnS \), the sulfide ions \( S^{2-} \) form a face-centered cubic (FCC) lattice, while the zinc ions \( Zn^{2+} \) occupy alternate tetrahedral voids. ### Step 2: Identify the Radii of the Ions Given: - Radius of \( Zn^{2+} \) (R_Zn) = \( 0.74 \, \text{Å} \) - Radius of \( S^{2-} \) (R_S) = \( 1.70 \, \text{Å} \) ### Step 3: Calculate the Distance Between the Ions The distance between the \( Zn^{2+} \) ion in the tetrahedral void and the \( S^{2-} \) ion can be expressed as: \[ \text{Distance} = R_{Zn} + R_{S} = 0.74 \, \text{Å} + 1.70 \, \text{Å} = 2.44 \, \text{Å} \] ### Step 4: Relate the Distance to the Lattice Parameter In an FCC lattice, the tetrahedral voids are located at a distance of \( \frac{\sqrt{3}}{4} a \) from the corner of the unit cell. Therefore, we can set up the equation: \[ \frac{\sqrt{3}}{4} a = R_{Zn} + R_{S} \] Substituting the values we have: \[ \frac{\sqrt{3}}{4} a = 2.44 \, \text{Å} \] ### Step 5: Solve for the Lattice Parameter \( a \) To find \( a \), we rearrange the equation: \[ a = \frac{4 \times 2.44 \, \text{Å}}{\sqrt{3}} \] Calculating this gives: \[ a \approx \frac{9.76 \, \text{Å}}{1.732} \approx 5.634 \, \text{Å} \] ### Conclusion The lattice parameter \( a \) of cubic \( ZnS \) is approximately \( 5.634 \, \text{Å} \). ### Final Answer The correct option is **B: 5.634 Å**. ---

To find the lattice parameter \( a \) of cubic \( ZnS \), we can follow these steps: ### Step 1: Understand the Structure of \( ZnS \) In cubic \( ZnS \), the sulfide ions \( S^{2-} \) form a face-centered cubic (FCC) lattice, while the zinc ions \( Zn^{2+} \) occupy alternate tetrahedral voids. ### Step 2: Identify the Radii of the Ions Given: - Radius of \( Zn^{2+} \) (R_Zn) = \( 0.74 \, \text{Å} \) ...
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Assertion-Reasoning)|19 Videos
  • SOLID STATE

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Interger)|9 Videos
  • SOLID STATE

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Multiple Correct)|39 Videos
  • REDUCTION AND OXIDATION REACTION OF ORGANIC COMPOUNDS

    CENGAGE CHEMISTRY ENGLISH|Exercise SUBJECTIVE TYPE|4 Videos
  • SOLUTIONS

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 2.3 (Objective)|9 Videos

Similar Questions

Explore conceptually related problems

Atomic radii of Ti, Zn and Hf vary.

All Zn(+II) compounds are white because:

In the zinc blende structure, zinc ions occupy alternate tetrahedral voids and S^(2-) ions exist as ccp the radii of Zn^(2+) and S^(2-) ions are 0.83Å and 1.74 Å respectively.The edge length of the ZnS unit cell is :

If the atomic weight of Zn in 70 and its atomic number in 30 , Then what be the atomic weight of Zn^(2+) ?

Sodium has body centred packing. Distance between two nearest atoms is 3.7 Å . The lattice parameter is

Sodium has body centred packing. Distance between two nearest atoms is 3.7 Å . The lattice parameter is

If the ionic radii of each K^(+) and F^(-) are 1.34Å , then tha atomic radii of K and F will be respectively:

A metal crystallizes into two cubic systems - face centred cubic (fcc) and simple cubic (SC), whose unit cell lengths are 4.5Å and 1.501Å respectively. Calculate the ratio of densities of face centred cubic and Simple cubic.

In an ionic solid r_(c)=1.6Å and r_(a)=1.86Å . Find edge length of cubic unit cell Å

Copper has face centred cubic (fc c) lattice with interatomic spacing equal to 2.54 Å . The value of the lattice constant for this lattice is

CENGAGE CHEMISTRY ENGLISH-SOLID STATE-Exercises (Single Correct)
  1. If the lattice parameter of Si = 5.43 Å and the mass of Si atom is 28....

    Text Solution

    |

  2. The lacttice parameter of GaAs (radius of Ga = 1.22 Å, As = 1.25 Å) is

    Text Solution

    |

  3. In cubic ZnS (II-VI) compounds, if the radii of Zn and S atoms are 0.7...

    Text Solution

    |

  4. Na and Mg crystallize in bcc- and fcc-type crystals, the ratio of numb...

    Text Solution

    |

  5. In a close packed structure of mixed oxides , the lattice is composed ...

    Text Solution

    |

  6. An ionic solid A^(o+)B^(Θ) crystallizes as an bcc structure. The dist...

    Text Solution

    |

  7. An ionic solid A^(o+)B^(Θ) crystallizes as an fcc structure. If the e...

    Text Solution

    |

  8. The gamma-form of iron has fcc structure (edge length 386 pm) and beta...

    Text Solution

    |

  9. The density of an ionic compounds (Mw = 58.5) is 2.165 kg m^(-3) and ...

    Text Solution

    |

  10. The edge length of unit cell of a metal (Mw = 24) having cubic structu...

    Text Solution

    |

  11. The ratio of packing fraction in fcc, bcc, and cubic structure is, res...

    Text Solution

    |

  12. If R is the radius of the octahedral voids and r is the radius of the...

    Text Solution

    |

  13. How many unit cells are present in a cubic shaped ideal crystal of NaC...

    Text Solution

    |

  14. What type of crystal defect is shown in the figure given below ? {:(...

    Text Solution

    |

  15. The volume of atom present in a face-centred cubic unit cell of a meta...

    Text Solution

    |

  16. An elemental crystal has density of 8570 kg m^(-3). The packing effici...

    Text Solution

    |

  17. The atomic fraction (d) of tin in bronze (fcc) with a density of 7717 ...

    Text Solution

    |

  18. Every atom or ion that forms an fcc unit cell is surrounded by

    Text Solution

    |

  19. Consider the structure of CsCl (8: 8 coordination). How many Cs^(o+) i...

    Text Solution

    |

  20. A metal of density 7.5 xx 10^(3) kg m^(-3) has an fcc crystal structur...

    Text Solution

    |