Home
Class 11
CHEMISTRY
Calculate the lattice energy from the fo...

Calculate the lattice energy from the following data (given `1 eV = 23.0 kcal mol^(-1)`)
i. `Delta_(f) H^(ɵ) (KI) = -78.0 kcal mol^(-1)`
ii. `IE_(1)` of `K = 4.0 eV`
iii. `Delta_("diss")H^(ɵ)(I_(2)) = 28.0 kcal mol^(-1)`
iv. `Delta_("sub")H^(ɵ)(K) = 20.0 kcal mol^(-1)`
v. `EA` of `I = -70.0 kcal mol^(-1)`
vi. `Delta_("sub")H^(ɵ)` of `I_(2) = 14.0 kcal mol^(-1)`

A

`+14.1 kcal mol^(-1)`

B

`-14.1 kcal mol^(-1)`

C

`-141 kcal mol^(-1)`

D

`+141 kcal mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the lattice energy from the provided data, we will use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps. We will break down the formation of KI into several steps and calculate the lattice energy accordingly. ### Step-by-Step Solution: 1. **Write the Formation Reaction:** The formation of KI can be represented as: \[ \text{I}_2(s) + 2\text{K}(s) \rightarrow 2\text{KI}(s) \] The enthalpy of formation (\(\Delta_f H^\circ\)) for KI is given as: \[ \Delta_f H^\circ(\text{KI}) = -78.0 \text{ kcal mol}^{-1} \] 2. **Sublimation of Potassium:** To convert solid potassium to gaseous potassium, we use the sublimation enthalpy: \[ \text{K}(s) \rightarrow \text{K}(g) \quad \Delta H_1 = 20.0 \text{ kcal mol}^{-1} \] Since we have 2 moles of K, the total enthalpy change for this step is: \[ \Delta H_1 = 2 \times 20.0 = 40.0 \text{ kcal mol}^{-1} \] 3. **Ionization Energy of Potassium:** The ionization energy (IE) of potassium is given as \(4.0 \text{ eV}\). We convert this to kcal/mol: \[ \Delta H_2 = 4.0 \text{ eV} \times 23.0 \text{ kcal mol}^{-1} = 92.0 \text{ kcal mol}^{-1} \] 4. **Sublimation of Iodine:** The sublimation of iodine involves converting solid iodine to gaseous iodine. The enthalpy of sublimation for \(I_2\) is given as: \[ \Delta H_3 = \frac{1}{2} \times 14.0 \text{ kcal mol}^{-1} = 7.0 \text{ kcal mol}^{-1} \] 5. **Dissociation of Iodine Molecule:** To dissociate \(I_2\) into two iodine atoms, we use the dissociation enthalpy: \[ \Delta H_4 = \frac{1}{2} \times 28.0 \text{ kcal mol}^{-1} = 14.0 \text{ kcal mol}^{-1} \] 6. **Electron Affinity of Iodine:** The electron affinity (EA) of iodine is given as: \[ \Delta H_5 = -70.0 \text{ kcal mol}^{-1} \] 7. **Combine All Steps:** The overall reaction can be summed up as follows: \[ \Delta_f H^\circ(\text{KI}) = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_{lattice} \] Rearranging gives: \[ \Delta H_{lattice} = \Delta_f H^\circ(\text{KI}) - (\Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5) \] 8. **Substituting the Values:** Now we substitute the values: \[ \Delta H_{lattice} = -78.0 - (40.0 + 92.0 + 7.0 + 14.0 - 70.0) \] \[ = -78.0 - (40.0 + 92.0 + 7.0 + 14.0 - 70.0) \] \[ = -78.0 - (40.0 + 92.0 + 7.0 + 14.0 - 70.0) = -78.0 - 83.0 = -161.0 \text{ kcal mol}^{-1} \] ### Final Calculation: Thus, the lattice energy is: \[ \Delta H_{lattice} = -161.0 \text{ kcal mol}^{-1} \]

To calculate the lattice energy from the provided data, we will use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps. We will break down the formation of KI into several steps and calculate the lattice energy accordingly. ### Step-by-Step Solution: 1. **Write the Formation Reaction:** The formation of KI can be represented as: \[ \text{I}_2(s) + 2\text{K}(s) \rightarrow 2\text{KI}(s) ...
Promotional Banner

Topper's Solved these Questions

  • PERIODIC CLASSIFICATION OF ELEMENTS AND GENERAL INORGANIC CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Single Correct)Miscellaneous|10 Videos
  • PERIODIC CLASSIFICATION OF ELEMENTS AND GENERAL INORGANIC CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Assertion Reasoning)|11 Videos
  • PERIODIC CLASSIFICATION OF ELEMENTS AND GENERAL INORGANIC CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises (Single Correct) Bond Angle|4 Videos
  • P-BLOCK GROUP 14 - CARBON FAMILY

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Archives (Subjective)|9 Videos
  • PURIFICATION OF ORGANIC COMPOUNDS AND QUALITATIVE AND QUANTITATIVE ANALYSIS

    CENGAGE CHEMISTRY ENGLISH|Exercise Assertion Reasoning Type|5 Videos

Similar Questions

Explore conceptually related problems

Calculate the EA of O atom to O^(2-) ion from the following data: i. Delta_(f)H^(ɵ)[MgO(s)] = -600 kJ mol^(-1) ii. Delta_(u)H^(ɵ) [MgO(s)] = -3860 kJ mol^(-1) iii. IE_(1) + IE_(2) of Mg(g) = 2170 kJ mol^(-1) iv. Delta_("diss")H^(ɵ) of Mg(s) = + 494 kJ mol^(-1) v. Delta_("sub")H^(ɵ) of Mg(s) = +150 kJ mol^(-1)

Calculate the electronegativity of fluorine from the following data: E_(H-H) = 104.4 kcal mol^(-1), E_(F-F) = 36.6 kcal mol^(-1) E_(H-F) = 134.3 kcal mol^(-1), chi_(H) = 2.1

Calculate Delta_(f)H^(Theta) ICI(g) from the data DeltaH dissociation CI_(2)(g) = 57.9 kcal mol^(-1) DeltaH dissociation I_(2)(g) = 36.1 kcal mol^(-1) DeltaH dissociation ICI(g) = 50.5 kcal mol^(-1) DeltaH sublimation I_(2)(g) = 15.0 kcal mol^(-1)

Calculate K_(sp) for AgCI . Given: Delta_(f)H^(Θ) Ag^(o+) = 25.3 kcal mol^(-1) Delta_(f)H^(Θ) C1^(Θ) =- 40.0 kcal mol^(-1) Delta_(f)H^(Θ) AgC1=- 30.36 kcal mol^(-1) S^(Θ) Ag^(o+), S^(Θ) C1^(Θ) , and S^(Θ) AgC1 are 17.7, 13.2 and 23.0 cal mol^(-1)

The lattice enthalpy of KI will be, if the enthalpy of (I) Delta_f H^- (KI) = -78.0 kcal mol^-1 (II) Ionisation energy of K to K^+ is 4.0 eV (III) Dissociation energy of I_2 is 28.0 kcal mol^-1 (IV) Sublimation energy of K is 20.0 kcal mol^-1 (V) Electron gain enthalpy for I to I^- is -70.0 kcal mol^-1 (VI) Sublimation energy of I_2 is 14.0 kcal mol^-1 (1 eV =23. 0 kcal mol^-1)

From the following data, calculate the standard enthalpy of formation of propane Delta_(f)H^(Theta) CH_(4) = - 17 kcal mol^(-1) Delta_(f)H^(Theta)C_(2)H_(6) =- 24 kcal mol^(-1), BE (C-H) = 99 kcal mol^(-1) (C- C) = 84 kcal mol^(-1) .

Find DeltaH of the process NaOH(s) rarr NaOH(g) Given: Delta_(diss)H^(Theta)of O_(2) = 151 kJ mol^(-1) Delta_(diss)H^(Theta) of H_(2) = 435 kJ mol^(-1) Delta_(diss)H^(Theta) of O-H = 465 kJ mol^(-1) Delta_(diss)H^(Theta) of Na -O = 255 kJ mol^(-1) Delta_(soln)H^(Theta)of NaOH = - 46 kJ mol^(-1) Delta_(f)H^(Theta) of NaOH(s) =- 427 kJ mol^(-1) Delta_("sub")H^(Theta) of Na(s) = 109 kJ mol^(-1)

Given Delta_(i)H^(Theta)(HCN) = 45.2 kJ mol^(-1) and Delta_(i)H^(Theta)(CH_(3)COOH) = 2.1 kJ mol^(-1) . Which one of the following facts is true?

Calculate Deltah for the eaction BaCO_(3)(s)+2HCI(aq) rarr BaCI_(2)(aq)+CO_(2)(g)+H_(2)O(l) Delta_(f)H^(Theta) (BaCO_(3)) =- 290.8 kcal mol^(-1), Delta_(f)H^(Theta) (H^(o+)) =0 Delta_(f)H^(Theta) (Ba^(++)) = - 128.67 kcal mol^(-1) , Delta_(f)H^(Theta)(CO_(2)) =- 94.05 kcal mol^(-1) , Delta_(f)H^(Theta) (H_(2)O) =- 68.32 kcal mol^(-1)

The dissociation energy of CH_(4)(g) is 360 kcal mol^(-1) and that of C_(2)H_(6)(g) is 620 kcal mol^(-1) . The C-C bond energy