Home
Class 12
CHEMISTRY
Calculate triangleE^0 for the reaction: ...

Calculate `triangleE^0` for the reaction:
`2A(g)+B(g) Leftrightarrow A_2B (g)` for which `triangleS^(0)=5.0J//K, K=1.0 xx 10^(-10) and T=300K`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate \(\Delta E^0\) for the reaction \(2A(g) + B(g) \leftrightarrow A_2B(g)\), we will follow these steps: ### Step 1: Identify the reaction and given values The reaction is: \[ 2A(g) + B(g) \leftrightarrow A_2B(g) \] Given values: - \(\Delta S^0 = 5.0 \, \text{J/K}\) - \(K = 1.0 \times 10^{-10}\) - \(T = 300 \, \text{K}\) ### Step 2: Calculate \(\Delta G^0\) Using the relationship between the equilibrium constant \(K\) and \(\Delta G^0\): \[ \Delta G^0 = -RT \ln K \] Where \(R = 8.314 \, \text{J/(mol K)}\). Substituting the values: \[ \Delta G^0 = - (8.314 \, \text{J/(mol K)})(300 \, \text{K}) \ln(1.0 \times 10^{-10}) \] Calculating \(\ln(1.0 \times 10^{-10})\): \[ \ln(1.0 \times 10^{-10}) = -10 \ln(10) \approx -10 \times 2.303 = -23.03 \] Now substituting this back into the equation: \[ \Delta G^0 = - (8.314)(300)(-23.03) \approx 5740.5 \, \text{J/mol} \approx 5.74 \, \text{kJ/mol} \] ### Step 3: Use the Gibbs free energy equation The Gibbs free energy equation is: \[ \Delta G^0 = \Delta H^0 - T \Delta S^0 \] Rearranging gives: \[ \Delta H^0 = \Delta G^0 + T \Delta S^0 \] Substituting the known values: \[ \Delta H^0 = 5740.5 \, \text{J/mol} + (300 \, \text{K})(5.0 \, \text{J/K}) \] \[ \Delta H^0 = 5740.5 \, \text{J/mol} + 1500 \, \text{J/mol} = 7240.5 \, \text{J/mol} \approx 7.24 \, \text{kJ/mol} \] ### Step 4: Calculate \(\Delta E^0\) Using the relationship between \(\Delta H^0\) and \(\Delta E^0\): \[ \Delta H^0 = \Delta E^0 + \Delta n_g RT \] Where \(\Delta n_g\) is the change in the number of moles of gas. For the reaction: \[ \Delta n_g = (1) - (2 + 1) = -2 \] Now substituting this into the equation: \[ \Delta H^0 = \Delta E^0 - 2RT \] \[ 7240.5 \, \text{J/mol} = \Delta E^0 - 2(8.314)(300) \] Calculating \(2RT\): \[ 2RT = 2(8.314)(300) = 4988.4 \, \text{J/mol} \] Now substituting back: \[ 7240.5 = \Delta E^0 - 4988.4 \] \[ \Delta E^0 = 7240.5 + 4988.4 = 12228.9 \, \text{J/mol} \approx 12.23 \, \text{kJ/mol} \] ### Final Answer \[ \Delta E^0 \approx 12.23 \, \text{kJ/mol} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    RC MUKHERJEE|Exercise Objective Problems|57 Videos
  • CHEMICAL EQUILIBRIUM

    RC MUKHERJEE|Exercise Objective Problems|57 Videos
  • ATOMIC WEIGHT

    RC MUKHERJEE|Exercise PROBLEMS |6 Videos
  • CHEMICAL EQUIVALENCE

    RC MUKHERJEE|Exercise PROBLEMS|24 Videos

Similar Questions

Explore conceptually related problems

Calculate the values of DeltaE^(@) and DeltaH^(@) for the reaction: 2A_((g))+B_((g))hArrA_(2)B_((g)) for which K_(p)=1.0xx10^(-10)atm^(-2) and DeltaS=5 JK^(-1) and T=300 K .

Calculate K_(P) for the reaction A(g) iff B(s)+2C(g), K_(C)=0.2 at 305 K.

For the reaction, PCl_(3) (g)+Cl_(2) (g) Leftrightarrow PCl_(5) (g)" at "27^@C, K_p" is 0.41 atm"^(-1). Then K_c is :

Caculate DeltaG(kJ//"mole") "for the reaction at 300K" N_(2)(g)+O_(2)(g)Leftrightarrow 2NO(g) at constant where partical pressure of N_(2), O_(2) and NO are 10^(-1)"bar", 10^(-3)"bar" . DeltaH_(f)^(@)NO(g) at 300K =90.5kJ//"mole"and DeltaS_(f)^(@),NO(g) at 300K =12.5J//K"mole"and DeltaS_(f)^(@)NO(g)at 300k=12.5J//K"mole" " [2.303xxRxx300=5750J//"mole"]

What will be the value of triangle_(r)S_(sys)^(@) for the following reaction at 373 K: CO(g)+H_(2)O(g) to CO_(2)(g)+H_(2)(g) triangle_(r) H^(@)=-4.5 xx 10^(4) J, triangle_(r)S_("univ")^(@) =57.5J/K

The gas phase raction 2A(g) Leftrightarrow A_(2)(g) at 400 K has triangleG^@=+25.5 Kj mol^(-1) . The equilibrium constant K_C for this reaction is ............. xx 10^(-2) . (Round off to the Nearest Integer). ["Use "R=8.3 J mol^(-1) K^(-1), ln 10=2.3 log_(10)2=0.30, 1 atm =1"bar"] ["antilog "(-0.3)=0.501]

RC MUKHERJEE-CHEMICAL EQUILIBRIUM-Problems
  1. N(2)O(4) is 25% dissociated at 37^(@)C and 1 atm. Calculate (i) K(p) a...

    Text Solution

    |

  2. Sulphide ion in alkaline solution reacts with solid sulphur to form po...

    Text Solution

    |

  3. The equilibrium constant K(p)" at "80^@C is 1.57 for the reaction, P...

    Text Solution

    |

  4. A mixture of 3.0 moles of SO2, 4.0 moles NO2, 1:0 mole of SO3 and 4.0...

    Text Solution

    |

  5. When 20.0 g of CaCO3 in a 10.0-litre flask is heated to 800^@C, 35% of...

    Text Solution

    |

  6. At 298 K, 550 g of D2O (20 g/mole, density 1-10 g/mL) and 498.5 g of H...

    Text Solution

    |

  7. At 300 K, the equilibrium constant for the reaction 2SO2(g) +O2(g) L...

    Text Solution

    |

  8. What kind of equilibrium constant can be calculated from a triangleG^(...

    Text Solution

    |

  9. Calculate K for the reaction 2SO(2) (g)+O(2) (g) Leftrightarrow 2SO(...

    Text Solution

    |

  10. The standard Gibbs free energy change of for the reaction, 2AB hArr A2...

    Text Solution

    |

  11. Determine the equilibrium concentrations that result from the reaction...

    Text Solution

    |

  12. A stream of gas containing H2 at an initial partial pressure of 0.20 a...

    Text Solution

    |

  13. At 973 K Kp is 1.50 for the reaction C(s)+CO(2)(g) Leftrightarrow 2C...

    Text Solution

    |

  14. A flask contains NH4Cl(s) in equilibrium with its decomposition produc...

    Text Solution

    |

  15. Chlorine molecules are 10% dissociated at 975 K at a pressure of 1-0 a...

    Text Solution

    |

  16. Show that 2.303 log K=-(triangleH^(0))/(RT)+(triangles^(0))/(R )

    Text Solution

    |

  17. Calculate the equilibrium ratio of C to A if 2.0 moles each of A and B...

    Text Solution

    |

  18. Calculate triangleE^0 for the reaction: 2A(g)+B(g) Leftrightarrow A2...

    Text Solution

    |

  19. The surface of copper gets tarnished by the formation of copper oxide....

    Text Solution

    |

  20. Consider the following reversible reaction : A(g)+B(g) Leftrightarro...

    Text Solution

    |