Home
Class 12
MATHS
Let alpha be the solution of 16^(sin^2 t...

Let `alpha` be the solution of `16^(sin^2 theta)+ 16^(cos^2 theta)=10` in `(0,pi//4)` . If the shadow of a vertical pole is `1/sqrt3` of its height , then the altitude of the sum is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha be the solution of 16^(sin^2 theta)+ 16^(cos^2 theta)=10 in (0,pi//4) . If the shadow of a vertical pole is 1/sqrt3 of its height , then the altitude of the sun is

The number of distinct solutions of sin5 theta*cos3 theta*cos7 theta=0 in [0,(pi)/(2)] is :

Find the number of solutions of sin theta+2sin2 theta+3sin3 theta+4sin4 theta=10in(0,pi)

If sin theta+cos theta=0 , theta in[0,2 pi] , then the sum of all possible solutions is

Number of solutions of 5cos^(2)theta-3sin^(2)theta+6sin theta cos theta=7 in the interval [0,2 pi) is:

sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=

The number of solution of the equation sin theta cos theta cos 2 theta .cos 4theta =1/2 in the interval [0,pi]

If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1 is (2)/(sqrt3) , then the sum of all the possible values of theta is (where, theta in (0, pi) )