Home
Class 12
MATHS
If sin^-1x+sin^-1y+sin^-1z=pi then x^4+y...

If `sin^-1x+sin^-1y+sin^-1z=pi` then `x^4+y^4+z^4+4x^2y^2z^2`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1 y+sin^-1 z= pi prove that: x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^20

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, then x^(4)+y^(2)+z^(4)+4x^(2)y^(2)z^(2)=K(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) where K is equal to 1( b) 2(c)4(d) none of these

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2) . (sin^(-1)x)^(2)+(sin^(-1)y)^(2)+(sin^(-1)z)^(2)=(3pi^(2))/(4) , then B=|(x+y+z)_("min")| . Then the value of (A+B) is _____________ .

If "sin"^(-1)x+"sin"^(-1)y=pi/2 , then (1+x^4+y^4) /( x^2-x^2y^2+y^2) is equal to

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi then x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ (2) y ^ (2) z ^ (2)

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi then x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ (2) y ^ (2) z ^ (2) =