Home
Class 12
MATHS
If y = a cos (log x) - b sin (log x), th...

If `y = a cos (log x) - b sin (log x), then x^2y_2 + xy_1 + y =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a cos (log x) -b sin (log x), thenx ^ (2) y_ (2) + xy_ (1) + y =

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

If y=a cos((log)_(e)x)+b sin((log)_(e)x), then x^(2)y_(2)+xy_(1)=(a)0(b)y(c)y(d) none of these

If y=3cos(log x)+4sin(log x), show that x^(2)y_(2)+xy_(1)+y=0

If y=3cos(log x)+4sin(log x), prove that x^(2)y_(2)+xy_(1)+y=0

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

y=3cos(log x)+4sin(log x) show that x^(2)y_(2)+xy_(1)+y=0

If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then x^(2) y''+ xy '=

If y=x^(n){a cos(log x)+b sin(log x)}, prove that x^(2)(d^(2)y)/(dx^(2))+(1-2n)(dy)/(dx)+(1+n^(2))y=0

If y=a cos(log x)+sin(log x), prove that (x^(2)d^(2))/(dx^(2))+x(dy)/(dx)+y=0