Home
Class 12
MATHS
Find int (sin 2x cos 2x dx)/sqrt(9 - cos...

Find `int (sin 2x cos 2x dx)/sqrt(9 - cos^4(2x))`

Text Solution

Verified by Experts

Let I = `int (sin 2x cos 2x dx)/sqrt(9 - cos^4(2x)) dx `
Put `cos^2(2x) = t` so that 4 sin 2x cos 2x dx = - dt
Therefore , I =`1/4 int -dt/sqrt(9 - t^2) = -1/4 sin^-1(t/3) + c = -1/4 sin^-1 [1/3 cos^2 2x] + c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int (cos x dx)/(sqrt(cos 2x))

int(cos 2x)/(cos x) dx=

int sin^(4) x cos^(2) x dx

int sin^(2) x cos^(2) x dx

int (sin 6x- sin 2x )/(cos 6x - cos 2x) dx

int(cos x dx)/(sqrt(16+11 sin x-10 sin^(2)x))dx

int (4 + 5 sin x)/cos^2 x dx =

Evaluate int dx/(sin x cos x)

int(sin^2x-cos^2x)/(sin^2xcdotcos^2x) dx =

int (sin 2x dx)/(a^(2) sin^(2)x+b^(2) cos^(2)x)