Home
Class 12
MATHS
Prove that int dx/((x^2 - 4) sqrt(x + 1)...

Prove that `int dx/((x^2 - 4) sqrt(x + 1)) = 2 int dt /((t^2 -3)(t^2 + 1))` where x + 1 =`t^2`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

Prove that, int_(2)^(3)(dx)/((x-1)sqrt(x^(2)-2x))=(pi)/(3)

int (dx)/((1+x)sqrt(1+2x-x^(2)))

Prove that, int_(0)^(3)(dx)/((x+2)sqrt(x+1))=tan^(-1).(3)/(4)

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

int (x^2 - 1)/((x^3)sqrt(2x^4- 2x^2 + 1)) dx is equal to

Let f(x) = int_2^x f(t^2-3t+2) dt then

Prove that, int_(2)^(3)(sqrt(x)dx)/(sqrt(x)+sqrt(5-x))=(1)/(2)

int sqrt(2+ sin 3t) cos 3t dt

Evaluate int (x^(2)-sqrt(3)x+1)/(x^(4)-x^(2)+1)dx