Home
Class 12
MATHS
Find the reduction formula for In = int ...

Find the reduction formula for `I_n = int (a^2 - x^2)^n dx`

Text Solution

Verified by Experts

`In(1 + 2n) = x (a^2 _ x^2)^n + 2na^2I_(n-1)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Find the reduction for I_m,n = int (sin x)^m (cos x)^n dx

Repeated application of intergration by parts gives us, the reduction formula if the integrand is dependent on a natural number n. If int(cos^(m)x)/(sin^(n)x)dx=(cos^(m-1)x)/((1-n)sin^(n-1)x)+A int (cos^(m-2)x)/(sin^(n-2)x)dx+c , then A is equal to-

We can derive different reduction formulas by using integration by parts. If int cosec^(n)x dx=(-cosec^(n-2)x cotx)/(n-1)+A int cosec^(n-2)x dx , then A is equal to-

Find int(x^(2)+x+1)dx

Integrate : int x^(n)logx dx

Evaluate: int x^2 sin x dx

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx

The natural number nle5 for which I_n=int_0^1 e^x(x-1)^n dx=16-6e is