Home
Class 12
MATHS
If f(x) = x^2/(1 + x^2) and g(x) = sin x...

If `f(x) = x^2/(1 + x^2)` and g(x) = sin x then `int (log)(x)cosx dx =`

A

`sin x - tan^-1(sin x)` + c

B

`cos x - tan^-1(sin x)` + c

C

`cos x + tan^-1(sin x)` + c

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1−x)^(1/2) and g(x)=ln(x) then the domain of (gof)(x) is

Let f(x) = cos 7 x cos 3x and g(x) = sin 7 x sin 3x int {f(x) + g(x) } dx =

int ((1+log x)^(2))/(x)dx

If an antiderivative of f(x) is e^(x) and that of g(x) is cosx, then the value of int f(x) cos x dx+ int g(x) e^(x) dx is equal to -

If f(x) =log e (1 + x)/(1 - x) and g(x) = (3x + x^3)/(1 + 3x^2) , then prove that f[g(x)] = 3 cdot f(x) .

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

Evaluate int (sin(ln x))/x dx

int (cot x)/(log sin x)dx

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .