Home
Class 12
MATHS
int (f(x)phi'(x)-phi(x)f'(x))/(f(x)phi(x...

`int (f(x)phi'(x)-phi(x)f'(x))/(f(x)phi(x)) {logphi(x) - logf(x)} dx` is

A

`"log"(phi(x))/(f(x))` + c

B

`1/2 {"log" (phi(x))/f(x)}^2 + c`

C

`(phi(x))/f(x) "log"[(phi(x))/(f(x))]+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: Let f(x) be a differentiable function and f(1)=2, If lim_(xrarr1)int_2^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is equal to

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: If lim_(xrarr0)int_0^(x) (t^2dt)/((x-sinx)sqrt(a+t))=1 , then the value of a is

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: lim_(xrarr0)int_0^(x^2) ((cost)^2dt)/((xsinx))=

int [f(x)g"(x) - f"(x)g(x)]dx is

int (f'(x))/(f(x))dx is equal to-

int_(0)^(2a)(f(x)dx)/(f(x)+f(2a-x))=a

int 2^(x) [f'(x) + f(x) (log 2)] dx is

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that phi(x)=|[f(x)g(x)h(x)];[f'(x)g'(x) h '(x)];[f' '(x)g' '(x )h ' '(x)]| is: constant

If phi (x)=f(x)+x f'(x) , then the value of int phi (x) dx is -

If phi(x)=(1-x)/(1+x) prove that phi{phi(x)}=x