Home
Class 12
MATHS
int dx/(x^n(1+x^n)^(1/n)) is...

`int dx/(x^n(1+x^n)^(1/n))` is

A

`1/(1-n)(x^-n + 1)^(1-1/n) + c`

B

`1/(n-1)(x^-n + 1)^(1-1/n) + c`

C

`1/(1-n)(x^n + 1)^(1-1/n) + c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int dx/(x(a + bx^(n))^(2))

int (dx)/(x^(n)(1+x^(n))^((1)/(n))),n=a positive integer.

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these

ifint(dx)/(x^2(x^n+1)^(((n-1)/n))=-[f(x)]^(1/n)+c ,t h e nf(x)i s (1+x^n) (b) 1+x^(-1) x^n+x^(-n) (d) none of these

int(dx)/(x(x^(n)+1))

int(dx)/(xsqrt(x^(n)+1))

int(dx)/(x(x^n+1)) is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n