Home
Class 12
MATHS
If int dx/((x+1)^3 + (x+1)^2) is k[t - t...

If `int dx/((x+1)^3 + (x+1)^2)` is `k[t - t^2/2 + t^3/3 - Inabst ] +c ` where `t^5 = x + 1` , then k is

A

-2

B

-3

C

-8

D

6

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

If x = 3 cos t - 2 cos^3 t,y = 3 sin t- 2 sin^3 t, then dy/dx is

If int (dx)/((2x-7) sqrt((x-3) (x-4))) = 1/k sec^(-1) (2x-7)+ c , then the value of k is -

dx/dt + x cos t = 1/2 sin 2 t

The slope of the tangent to the curve represented by x = t^(2) + 3t - 8 and y = 2t^(2) - 2t - 5 at the point A (2,-1) is (k)/(7) , find k .

Find the value of each of the following polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vi) q (z) = 5z ^(3) - 4z + sqrt2 at z =2

Show that equations x = 5 * (1 - t^(2))/(1 + t^(2)), y = 6 * (t)/(1 + t^(2) ) where t is a variable parameter, define an ellipse . Find its eccentricity .

Find (dy)/(dx) if:- x = 2t,y= t^3

If int_(0)^(t^(2)) x f(x) dx=(2)/(5) t^(5) , t gt 0 , then the value of f((4)/(25)) is -

A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6 at t=2 is a. 1/3(2 hat i+2 hat j+ hat k) b. 1/3( hat i- hat j- hat k) c. 1/6(2 hat i+ hat j+ hat k) d. 2/3( hat i+ hat j+ hat k)

The chord A B of the parabola y^2=4a x cuts the axis of the parabola at Cdot If A-=(a t_1^ 2,2a t_1),B-=(a t_2^2,2a t_2) , and A C : A B=1:3, then prove that t_2+2t_1=0 .