Home
Class 12
MATHS
Let f(x) = 3/( 3x^2 + 9) and g(x)=x^2/( ...

Let f(x) = `3/( 3x^2 + 9)` and g(x)=`x^2/( 3x^2 + 9)`
`int (f(x) + g(x)) dx =`?

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = 3/( 3x^2 - 9) and g(x)= x^2/( 3x^2 - 9) int (g(x) - f(x)) dx is equal to ?

Let f(x) = cos 7 x cos 3x and g(x) = sin 7 x sin 3x int {f(x) + g(x) } dx =

Let f(x) = cos 7 x cos 3x and g(x) = sin 7 x sin 3x int f(x) dx =

Let f(x) = cos 7 x cos 3x and g(x) = sin 7 x sin 3x int g(x) dx =

Let f(x)=(1)/(1+x^(2)) and g(x) is the inverse of f(x) ,then find g(x)

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

If f(x) is defined on [2,2] by f(x) = 4x^2-3x+1 and g(x) = (f(-x)-f(x))/(x^2+3) then int_(-2)^2g(x) dx is equal to

int [f(x)g"(x) - f"(x)g(x)]dx is

Let f(x)=sin x+cosx and g(x)=x^(2)-1 , then g{f(x)} is invertible if -

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

PATHFINDER-INDEFINITE INTEGRATION-QUESTION BANK
  1. The value of int0^x (t - abst)^2/(1 + t^2) dt is equal to

    Text Solution

    |

  2. int dx/((x+1)(x+2)) = A log (x + 1) + B log (x +2) + c where

    Text Solution

    |

  3. Let f(x) = 3/( 3x^2 + 9) and g(x)=x^2/( 3x^2 + 9) int (f(x) + g(x)) ...

    Text Solution

    |

  4. Let f(x) = 3/( 3x^2 - 9) and g(x)=x^2/( 3x^2 - 9) int (g(x) - f(x)) ...

    Text Solution

    |

  5. If i(m - 2 , n + 2) = int sin^(m - 2)x cos^(n+2)x dx and I(m,n) = - (s...

    Text Solution

    |

  6. If In = int x sin^n x dx and In = -(x sin^(n-1)x cos x)/n + (sin^n x)/...

    Text Solution

    |

  7. Match List - I with List-II Let the functions defined in List - I ha...

    Text Solution

    |

  8. Match List - I with List-II Let the functions defined in List - I ha...

    Text Solution

    |

  9. If int xdx/sqrt(7x - 10 - x^2)^3 = (lambda(7x - 20))/sqrt(7x - 10 - x^...

    Text Solution

    |

  10. If int dx/(1 + sin x) = tan(x/2 + a) + b then the value of -(16a)/pi m...

    Text Solution

    |

  11. If int sin^-1 ((2x + 2)/sqrt(4x^2 + 8x + 13)) dx = (x + 1) tan^-1 ((2x...

    Text Solution

    |

  12. If int (x^9 + x^6 + x^3)(2x^6 + 3x^3 + 6)^(1/3) dx = 1/a (2x^9 + 3x^6 ...

    Text Solution

    |

  13. If int (sqrttanx + sqrtcotx) dx = a tan^-1 ((tan x - 1)/sqrt(b tan x))...

    Text Solution

    |

  14. Evaluate : int dx/(7x - 10 - x^2)

    Text Solution

    |

  15. Evaluate : int (xdx)/sqrt(1+x^4)

    Text Solution

    |

  16. Evaluate : int dx/(sqrte^(5x) cdot root(4)(e^(2x) + e^(-2x))^3)

    Text Solution

    |

  17. Evaluate : int0^log5(e^x(e^x-1)^(1/2))/(e^x+3)dx

    Text Solution

    |

  18. Evaluate : int1^2 (e^(x^2))dx=a, then find the value of inte^(e^4)root...

    Text Solution

    |

  19. int 1/(sin (x-a) cos(x-b)) dx

    Text Solution

    |

  20. The value of int0^3[x]dx, where [x] is greatest integer function is......

    Text Solution

    |