Home
Class 12
MATHS
int(tan(logx))/xdx =?...

`int(tan(logx))/xdx` =?

A

`log abs(cos(logx))+c`

B

`log abs(sin(logx))+c`

C

`log abs(sec(logx))+c`

D

`-log abs(tan(logx))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(2+logx))/xdx

Evaluate: int((1+logx)^3)/x dx

int sin(logx)dx

Evaluate int cos(logx)/xdx .

int (sin(logx))/(x^(3))dx

Evaluate: int cos(logx)dx .

Integrate : int x^(3)(logx)^(2)dx

int tan^(6)xdx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

Integrate : int(logx)^(2)dx