Home
Class 12
MATHS
int(e^xdx)/(e^(2x)+1)=...

`int(e^xdx)/(e^(2x)+1)`=

A

`log(e^x+e^-x)+c`

B

`log(e^(2x)+1)+c`

C

`tan^-1(e^x)+c`

D

`tan^-1(2e^x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)-1)

int(dx)/(1+e^(x))

int (e^(x)dx)/(e^(2x)+e^(x)-2)

int(e^(2x)-1)/(e^(2x)+1)dx is eual to -

The value of int (e^(x)dx)/((e^(x)+2)(e^(x)+1)) is equal to -

int(e^(2x))/(e^(x)+1)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Integrate : int (e^(x) dx)/(1-3e^(x)-3e^(2x))

Evaluate: int(e^(2x)-1)/(e^(2x)+1)dxdot

int (e^(2x))/(e^(2x)+4)dx