Home
Class 12
MATHS
I=inte^x/(e^x+1)^(1//4)dx is equal to...

`I=inte^x/(e^x+1)^(1//4)dx` is equal to

A

(e^(2x)-e^(-2x))/2+c`

B

`2/3 (e^x+1)^(3//2)+c`

C

(e^x-e^(-2x))/2+c`

D

`4/3 (e^x+1)^(3//4)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(2x))/(e^(x)+1)dx

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

I=int(e^x(1+sinx))/(1+cosx)dx is equal to

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

int e^x((x^2+1))/((x+1)^2)dx is equal to (a) ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these

The value of int e^(x log a)*e^(x)dx is equal to -

I=int(dx)/(1+e^x) dx is equal to

The value of int(dx)/(e^(x)+e^(-x)) is equal to -

int (e^(x))/(1+e^(x))dx