Home
Class 12
MATHS
I=int(cos4x+1)/(cotx-tanx)dx is equal to...

`I=int(cos4x+1)/(cotx-tanx)dx` is equal to ?

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

I=int(e^x(1+sinx))/(1+cosx)dx is equal to

If int(cos4x+1)/(cotx-tanx)dx = Acos4x+B ,t h e n (a) A=-1/8 (b) B=1/2 (c) A=-1/4 (d) None of this

If I=int(sqrt(cotx)-sqrt(tanx))dx , is equal to (a) sqrt(2)"log"(sqrt(tanx)-sqrt(cotx))+C (b) sqrt(2)log|sinx|cosx+sqrt(sin2x)|+C (c) sqrt(2)log| sin x-cosx+sqrt(2) sin xcosx|+C (d) sqrt(2)log|sin(x+pi/4)+sqrt(2)sinxcosx|+C

If int(cos 4x+1)/(cotx-tan x) dx=k cos 4x+c , then the value of k is -

If int (cos 4x + 1)/(cot x - tan x) dx = A cos 4x + B, then

I=intsqrt(1+2tanx(secx+tanx))dx is equal to

I = int 1/(cos^4 x) dx is equal to

inte^(tanx)(secx-sinx)dx"is equal to"

int(In(tanx))/(sinx cosx)dx " is equal to "

The value of int cos^(-1)((1)/(x))dx is equal to -