Home
Class 12
MATHS
intxtan^-1x dx=...

`intxtan^-1x dx`=

A

`((x^2+1)/2)tan^-1x-x/2+c`

B

`((x^2+1)/2)tan^-1x-x+c`

C

`(x^2+1)tan^-1x-x+c`

D

`(x^2+1)tan^-1x+x+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

inte^x(tan^-1x+(2x)/((1+x^2)^2))dx is equal to

Integrate : int tan^(-1) sqrt((1-x)/(1+x))dx

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

The value of int_(-a)^a(cos^(- 1)x-sin^(- 1)sqrt(1-x^2))dx is (a>0) where (int_0^acos^(- 1)x dx=A) is

int ((x^(2)-1)dx)/(x^(4) + x^(2) + 1)

int ((x^(2)-1)dx)/(x^(4)+x^(2)+1)

Evaluate: inttan^(-1)sqrt((1-x)/(1+x))dx

int(1-x^6)/(1-x)dx