Home
Class 12
MATHS
inte^x(tan^-1x+(2x)/((1+x^2)^2))dx is eq...

`inte^x(tan^-1x+(2x)/((1+x^2)^2))dx` is equal to

A

`e^x(tan^-1x-1/(1+x^2)^2)+c`

B

`e^x(tan^-1x+1/(1+x^2)^2)+c`

C

`e^x(cot^-1x+1/(1+x^2)^2)+c`

D

`e^x(cot^-1x-1/x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(x^2e^x)/((x+2)^2)dx is equal to

int_0^1 tan^(-1) ((2x-1)/(1+x-x^2)) dx is equal to

int (e^(tan^(-1)x)dx)/((1+x^(2))^(2))

For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

int(e^(x)(1+x^(2)))/((1+x)^(2))dx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

int_(0)^(1)(d)/(dx)["sin"^(-1)(2x)/(1+x^(2))]dx is equal to -

int (tan^(-1)x dx)/((1+x^(2))^((3)/(2))

The value of int_(0)^(1) tan^(-1)((1)/(x^(2)-x+1))dx is equal to -