Home
Class 12
MATHS
I=intsqrt(1+2tanx(secx+tanx))dx is equal...

`I=intsqrt(1+2tanx(secx+tanx))dx` is equal to

A

`log_eabs(sec^2x+tanxsecx)+c`

B

`log_eabs(1+tanx(secx+tanx))+c`

C

`log_eabs(sinx(secx-tanx))+c`

D

`log_eabs(secx+tan^2x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

inte^(tanx)(secx-sinx)dx"is equal to"

int(In(tanx))/(sinx cosx)dx " is equal to "

I=int(cos4x+1)/(cotx-tanx)dx is equal to ?

If y=intsqrt(x)(1+x^(1/3))^4dx is equal to

Evaluate int(tanx)/(secx+tanx)dx

intsqrt(x/(1+x^3))dx is equal to ?

Find int(2sqrt(tanx))/(sin2x)dx .

Choose the correct answer intsqrt(1+x^(2))dx is equal to

The value of int_0^((3pi)/2)(|tan^(-1)(tanx)|-|sin^(-1)(sinx)|)/(|tan^(-1)(tanx)|+|sin^(-1)(sinx)|)dx is equal to

inte^x((2tanx)/(1+tanx)+cot^2(x+pi/4))dx is equal to (a) e^xtan(pi/4-x)+c (b) e^xtan(x-pi/4)+c (c) e^xtan((3pi)/4-x)+c (d) none of these