Home
Class 12
MATHS
I=int((sin^8x-cos^8x))/(1-2sin^2xcos^2x)...

`I=int((sin^8x-cos^8x))/(1-2sin^2xcos^2x)dx` is equal

A

sin2x+c

B

`(sin2x)/2+c`

C

`(-sin2x)/2+c`

D

`2/3 sin2x+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x-cos^2x)/(sin^2xcdotcos^2x) dx =

Choose the correct answer int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)xcos^(2)x)

I =int (sin ^(8) x- cos ^(8) x)/( 1-2 sin ^(2) x cos ^(2)x ) dx is equal to:

Prove : int (sin^(8) x - cos ^(8)x)/(1-2sin^(2) x cos ^(2) x) dx = - 1/2 sin 2x + c

Evaluate the following integral: int (sin^3x+cos^3x)/(sin^2 xcos^2x) dx.

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

if I=int_0^(pi/2)( sin8xlog(cotx))/(cos2x)dx then I equals

int (cos^3 x + cos^5 x)/(sin^2 x + sin^4 x) dx equals

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to