Home
Class 12
MATHS
If intf(x)cosxdx=1/2 f^2(x)+c then f(x) ...

If `intf(x)cosxdx=1/2 f^2(x)+c` then f(x) can be

A

x

B

1

C

cosx

D

sinx

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If intf(x)sinxcosxdx=(1)/(2(b^2-a^2))logf(x)+c , where c is the constant of integration, then f(x)=

Fill in the blank : If intf(x)dx=(e^(x))/(2)(sinx-cosx) then f(x) will be _____________.

int 1/f(x) dx = Inabs(f(x))^2 + c then, f(x) is

If int(dx)/(x^2+a x+1)=f(g(x))+c , then f(x) is inverse trigonometric function for |a|>2 f(x) is logarithmic function for |a| 2 g(x) is rational function for |a|<2

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

If intf(x)dx=Psi(x)," then "intx^(5)f(x^(3))dx is equal to -

If f(x)=x/(2^(x)-1) , then show that f(-1) = 2.

If f(x)= x^2/(1+x^2) then the range of f is

Consider two differentiable functions f(x),g(x) satisfying 6intf(x)g(x)dx=x^(6)+3x^(4)+3x^(2)+c and 2 int(g(x)dx)/(f(x))=x^(2)+c, " where " f(x) gt 0 AA x in R. lim_(x to 0) (log(f(x)))/(g(x))=