Home
Class 12
MATHS
I=int(dx)/(1+e^x) dx is equal to...

`I=int(dx)/(1+e^x) dx` is equal to

A

`log_eabs((1+e^x)/e^x)+c`

B

`log_eabs(e^x/(1+e^x))+c`

C

`log_eabs((e^x)(1+e^x))+c`

D

`log_eabs((e^(2x)+1))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int_0^(pi/2) e^x dx is equal to

Choose the correct answers int(dx)/(e^(x)+e^(-x)) is equal to

The value of int(dx)/(e^(x)+e^(-x)) is equal to -

int(dx)/(e^(x)-1)

int e^(x^4) (x^3) dx is equal to

If an antiderivative of f(x) is e^(x) and that of g(x) is cosx, then the value of int f(x) cos x dx+ int g(x) e^(x) dx is equal to -

The value of int_(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

I = int 1/(cos^4 x) dx is equal to

int (x^(2)+1)/(x) dx is equal to -