Home
Class 12
MATHS
int(dx)/sqrt(2x-x^2) is equal to...

`int(dx)/sqrt(2x-x^2)` is equal to

A

`sin^-1(1-x)+c`

B

`-cos^-1(1-x)+c`

C

`sin^-1(x-1)+c`

D

`cos^-1(x-1)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x+sqrt(a^2-x^2)) is equal to

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

int dx/((1+sqrtx)sqrt(x-x^2) is equal to ?

The value of int (dx)/(sqrt(e^(2x)-1)) is equal to -

The value of of int (dx)/(sqrt(2x-x^(2))) is -

int(dx)/(x^2sqrt(1-x^2))

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

int (dx)/(sqrt(1-x-x^(2)))

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c