Home
Class 12
MATHS
The value of the integral int(sin(x/2))/...

The value of the integral `int(sin(x/2))/sqrt(1+sin(x/2)) dx` can be

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

Integrate: int (sin x)/(sqrt(1+ sin x))dx

int (dx)/(sqrt(1+ sin x))

The value of the integral int (sin x - x cos x)/(x(x + sin x)) dx is equal to

The value of integral int(dx)/(sin(x-a)sin(x-b)) is -

The value of the integral int_(pi/6)^(pi/2) ((1 + sin 2x + cos 2x)/(sin x + cosx)) dx is

The maximum and minimum values of the integral int_0^(pi/2)dx/(1+sin^2x) are

int ("sin" x dx)/sqrt (1-sin x)

int(2sin^-1x)/sqrt(1-x^2)dx =