Home
Class 12
MATHS
The value of the integral int(cos7x-cos8...

The value of the integral `int(cos7x-cos8x)/(1+2cos5x) dx` can be

A

`(sin2x)/2-(sin3x)/3+c`

B

`(sin5x)/5+(cos5x)/4+c`

C

`(cosx)/3-(sin4x)/2+c`

D

sin2x-sin3x+c

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int (sin x - x cos x)/(x(x + sin x)) dx is equal to

Evaluate: int(cos x-cos 2x)/(1-cosx)dx .

int dx/(cos3x-cos x)

The value of the integral int e^(sin^2 x) (cos x + cos^3 x) sin x dx is

Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

int (1 - cos 2x)/(1 + cos 2x) dx =

Integrate : int (x-sinx)/(1-cos x)dx

Evaluate the following integral: int cos2x cos4x cos6x dx

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to

The value of the integral sqrt2 int_0^pi sqrt(1-cos2x) dx is ?