Home
Class 12
MATHS
int[cos(2x-pi/4)]^-2dx=...

`int[cos(2x-pi/4)]^-2dx`=

A

`1/2tan(2x-pi/4)+c`

B

`1/2cot(2x-pi/4)+c`

C

`1/2tan(2x+pi/4)+c`

D

`tan(x+pi/4)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int cos^(2)x/sin^(4)x dx

Evaluate int (cos 2x - sin 4x) dx

int(cos 2x)/(cos x) dx=

Consider I_1=int_0^(pi//4)e^(x^2)dx ,I_2=int_0^(pi//4)e^x dx ,I_3=int_0^(pi//4)e^(x^2)cosxdx , I_4=int_0^(pi//4)e^(x^2)sinxdx . STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosx .

Evaluate the following integrals : int (cos^(2) x - sin^(2) x)/(sqrt(1+cos 4 x)) dx

int cos^(2) (2x+3)dx

The value of the integral int_(-pi/2)^(pi/2) (x^2 + In(pi + x)/(pi - x))cos x dx is

Evaluate: int_(-(3pi)/2)^(-pi/2)[(x+pi)^3+cos^2(x+3pi)]dx

Evaluate: int_(-pi/4)^(pi/4)(x^9-3x^5+7x^3-x+1)/(cos^2x)dx

Evaluate: int_(-pi/4)^(pi/4)(x^9-3x^5+7x^3-x+1)/(cos^2x)dx