Home
Class 12
MATHS
If I=intxloge(1+1/x)dx=p(x)ln(1+1/x)+1/2...

If `I=intxlog_e(1+1/x)dx=p(x)ln(1+1/x)+1/2 x-1/2, ln(1+x)+c` then

A

`p(x)=1/2 x^2`

B

p(x)=0

C

p(x)=1

D

p(x)=x/2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

If int x log(1 + x^2) dx = phi(x) log(1 + x^2) + psi(x) + c then

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then (a) f(x)=1/2x^2 (b) g(x)=logx (c) A=1 (d) none of these

If f(x) =tan ^(-1)x-(1)/(2)log x . Then -

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

If f (x) =log ""(1+x)/(1-x) then-

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is

int ((1+log x)^(2))/(x)dx

int_(0)^(1)log((1-x)/(x))dx=0

Evaluate: int(log(1+1/x))/(x(1+x))dx

Integrate : int log(1+x)^(1+x)dx