Home
Class 12
MATHS
int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx...

`int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx`

A

sin2x+c

B

1/2 sin2x+c

C

-1/2 sin2x+c

D

2/3 sin2x+c

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x-cos^2x)/(sin^2xcdotcos^2x) dx =

Evaluate the following integral: int (sin^3x+cos^3x)/(sin^2 xcos^2x) dx.

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)xcos^(2)x)

Choose the correct answer int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Prove : int (sin^(8) x - cos ^(8)x)/(1-2sin^(2) x cos ^(2) x) dx = - 1/2 sin 2x + c

Find the integrals of the functions (sin^(3)x+cos^(3)x)/(sin^(2)xcos^(2)x)

I =int (sin ^(8) x- cos ^(8) x)/( 1-2 sin ^(2) x cos ^(2)x ) dx is equal to:

Evaluate: int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

Evaluate : int_(0)^(pi/4) (sin^2xcos^2xdx)/((sin^3x+cos^3x)^2)