Home
Class 12
MATHS
The integral intsec^2x/(secx+tanx)^(9//2...

The integral `intsec^2x/(secx+tanx)^(9//2) dx` equals (for some arbitrary constant K)

A

`-1/(secx+tanx)^(9//2){1/11-1/7(secx+tanx)^2}+K`

B

`1/(secx+tanx)^(9//2){1/11-1/7(secx+tanx)^2}+K`

C

`-1/(secx+tanx)^(9//2){1/11+1/7(secx+tanx)^2}+K`

D

`1/(secx+tanx)^(9//2){1/11+1/7(secx+tanx)^2}+K`

Text Solution

Verified by Experts

3
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • MATRICES

    PATHFINDER|Exercise QUESTION BANK|23 Videos

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot (a) -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K (b) 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K (c) -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K (d) 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The integral int_0^(pi/2) dx/(x+sqrt(a^2-x^2)) equals

I=intsec^(2//3)xcosec^(4//3)x dx is equal to

I=intsqrt(1+2tanx(secx+tanx))dx is equal to

Evaluate int(secx-tanx)^(2)dx

"The integral " int(dx)/(x^(2)(x^(2)+1)^(1/2))" equals"

int(secx)/(sqrt(cos2x)) dx is equal to

Integrate : int xsec^(2)x dx

The integral int(2x^12+5x^9)/((x^5+x^3+1)^3)dx is equal to: where C is an arbitrary constant.

Choose the correct answer inte^(x)secx(1+tanx)dx equals