Home
Class 12
MATHS
Evaluate:If f(a-x)=f(x), then show that ...

Evaluate:If f(a-x)=f(x), then show that `int_0^axf(x)dx=a/2int_0^af(x)dx`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

If f(x)is integrable function in the interval [-a,a] then show that int_(-a)^(a)f(x)dx=int_(0)^(a)[f(x)+f(-x)]dx.

If f(x)=f(a-x) then int_(0)^(a)xf(x)dx is equal to

If f(2a-x)=-f(x) then int_(0)^(2a)f(x)dx is equal to-

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

Show that : int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx

Let f(x) be a continuous function AAx in R , except at x=0, such that int_0^a f(x)dx , ain R^+ exists. If g(x)=int_x^a(f(t))/t dt , prove that int_0^af(x)dx=int_0^ag(x)dx