Home
Class 12
MATHS
Evaluate: underset(nrarrinfty)lim (1/(n+...

Evaluate: `underset(nrarrinfty)lim (1/(n+1)+1/(n+2)+....+1/(2n))`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : underset(nrarrinfty)lim [1/n + 1/(n+1)+ 1/(n+2) + .... +1/(4n)]

Let f(x) be a continous function defined on the closed interval [a,b] then underset(nrarrinfty)lim sumunderset(r=1)overset(n) (1/n)f(r/n)=int_0^1f(x)dx The value of underset(nrarrinfty)lim (1/n) [(1/(n+1))+2/(n+2)+......+1/2} is

Evaluate: underset(n rarr infty)lim 1/n[sin (pi/(2n)) +sin((2pi)/(2n))+sin ((3pi)/(2n))+......+sin((npi)/(2n))]

Evaluate : underset(nrarrinfty)lim((1^m+2^m+...+n^m)/n^(m+1))

Evaluate: underset(nrarrinfty)lim[(1/n^2sec^2(1/(n^2))+2/n^2sec^2((4)/(n^2))....+1/nsec^2(1)]

Evaluate : underset(nrarrinfty)Lt[(1)/(sqrt(n^2 - 1^2)) + 1/(sqrt(n^2-2^2)) +1/(sqrt(n^2 - 3^2))+....+ 1/(sqrt(n^2 - (n-1)^2))]

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

Evaluate (with the help of definite integral) underset(nrarr infty) It ((1)/(n+1) + (1)/(n+2) + ….. + (1)/(6n))

Evaluate : underset(nrarroo)"lim"(1+sqrt(n))/(1-sqrt(n))

underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n) is equal to