Home
Class 12
MATHS
f(x)=int1^xlogt/(1+t+t^2)dt (xge1) then ...

`f(x)=int_1^xlogt/(1+t+t^2)dt (xge1)` then prove that f(x) =f(1/x)

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY & DIFFERENTIABILITY

    PATHFINDER|Exercise QUESTION BANK|13 Videos
  • DETERMINATES

    PATHFINDER|Exercise QUESTION BANK|21 Videos

Similar Questions

Explore conceptually related problems

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

If f(x)=(1-x)/(1+x), prove that f[f{f(1/x)}]=-f(x)

If 2f(x-1)-f((1-x)/x)=x , then prove that 3f(x)=2(x+1)+1/(x+1) .

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

If x int_(0)^(x)sin(f(t))dx=(x+2)int_(0)^(1)tsin(f(t))dt , where xgt0 , then show that f'(x)cot f(x)+3/(1+x)=0

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals